Multiscale spatial temporal attention graph convolution network for skeleton-based anomaly behavior detection

被引:6
|
作者
Chen, Xiaoyu [1 ,2 ]
Kan, Shichao [3 ]
Zhang, Fanghui [1 ,2 ]
Cen, Yigang [1 ,2 ]
Zhang, Linna [4 ]
Zhang, Damin [5 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Technol, Beijing 100044, Peoples R China
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[4] Guizhou Univ, Coll Mech Engn, Guiyang 550025, Guizhou, Peoples R China
[5] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Multiscale spatial temporal graph; Spatial attention graph convolution; Skeleton-based anomaly behavior detection; NEURAL-NETWORKS;
D O I
10.1016/j.jvcir.2022.103707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly behavior detection plays a significant role in emergencies such as robbery. Although a lot of works have been proposed to deal with this problem, the performance in real applications is still relatively low. Here, to detect abnormal human behavior in videos, we propose a multiscale spatial temporal attention graph convolution network (MSTA-GCN) to capture and cluster the features of the human skeleton. First, based on the human skeleton graph, a multiscale spatial temporal attention graph convolution block (MSTA-GCB) is built which contains multiscale graphs in temporal and spatial dimensions. MSTA-GCB can simulate the motion relations of human body components at different scales where each scale corresponds to different granularity of annotation levels on the human skeleton. Then, static, globally-learned and attention-based adjacency matrices in the graph convolution module are proposed to capture hierarchical representation. Finally, extensive experiments are carried out on the ShanghaiTech Campus and CUHK Avenue datasets, the final results of the frame-level AUC/EER are 0.759/0.311 and 0.876/0.192, respectively. Moreover, the frame-level AUC is 0.768 for the human-related ShanghaiTech subset. These results show that our MSTA-GCN outperforms most of methods in video anomaly detection and we have obtained a new state-of-the-art performance in skeleton-based anomaly behavior detection.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Spatial-temporal graph attention network for video anomaly detection
    Chen, Haoyang
    Mei, Xue
    Ma, Zhiyuan
    Wu, Xinhong
    Wei, Yachuan
    IMAGE AND VISION COMPUTING, 2023, 131
  • [22] Skeleton-based action recognition with temporal action graph and temporal adaptive graph convolution structure
    Cao, Yi
    Liu, Chen
    Huang, Zilong
    Sheng, Yongjian
    Ju, Yongjian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29139 - 29162
  • [23] Skeleton-based action recognition with temporal action graph and temporal adaptive graph convolution structure
    Yi Cao
    Chen Liu
    Zilong Huang
    Yongjian Sheng
    Yongjian Ju
    Multimedia Tools and Applications, 2021, 80 : 29139 - 29162
  • [24] Temporal channel reconfiguration multi-graph convolution network for skeleton-based action recognition
    Lei, Siyue
    Tang, Bin
    Chen, Yanhua
    Zhao, Mingfu
    Xu, Yifei
    Long, Zourong
    IET COMPUTER VISION, 2024, 18 (06) : 813 - 825
  • [25] Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection
    Luo, Weixin
    Liu, Wen
    Gao, Shenghua
    NEUROCOMPUTING, 2021, 444 : 332 - 337
  • [26] Dynamic Fall Detection Using Graph-Based Spatial Temporal Convolution and Attention Network
    Egawa, Rei
    Miah, Abu Saleh Musa
    Hirooka, Koki
    Tomioka, Yoichi
    Shin, Jungpil
    ELECTRONICS, 2023, 12 (15)
  • [27] Dynamic Semantic-Based Spatial Graph Convolution Network for Skeleton-Based Human Action Recognition
    Xie, Jianyang
    Meng, Yanda
    Zhao, Yitian
    Anh Nguyen
    Yang, Xiaoyun
    Zheng, Yalin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6225 - 6233
  • [28] Multi-stream adaptive spatial-temporal attention graph convolutional network for skeleton-based action recognition
    Yu, Lubin
    Tian, Lianfang
    Du, Qiliang
    Bhutto, Jameel Ahmed
    IET COMPUTER VISION, 2022, 16 (02) : 143 - 158
  • [29] Spatial-temporal slowfast graph convolutional network for skeleton-based action recognition
    Fang, Zheng
    Zhang, Xiongwei
    Cao, Tieyong
    Zheng, Yunfei
    Sun, Meng
    IET COMPUTER VISION, 2022, 16 (03) : 205 - 217
  • [30] An improved spatial temporal graph convolutional network for robust skeleton-based action recognition
    Xing, Yuling
    Zhu, Jia
    Li, Yu
    Huang, Jin
    Song, Jinlong
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4592 - 4608