Multiscale spatial temporal attention graph convolution network for skeleton-based anomaly behavior detection

被引:6
|
作者
Chen, Xiaoyu [1 ,2 ]
Kan, Shichao [3 ]
Zhang, Fanghui [1 ,2 ]
Cen, Yigang [1 ,2 ]
Zhang, Linna [4 ]
Zhang, Damin [5 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Technol, Beijing 100044, Peoples R China
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[4] Guizhou Univ, Coll Mech Engn, Guiyang 550025, Guizhou, Peoples R China
[5] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Multiscale spatial temporal graph; Spatial attention graph convolution; Skeleton-based anomaly behavior detection; NEURAL-NETWORKS;
D O I
10.1016/j.jvcir.2022.103707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly behavior detection plays a significant role in emergencies such as robbery. Although a lot of works have been proposed to deal with this problem, the performance in real applications is still relatively low. Here, to detect abnormal human behavior in videos, we propose a multiscale spatial temporal attention graph convolution network (MSTA-GCN) to capture and cluster the features of the human skeleton. First, based on the human skeleton graph, a multiscale spatial temporal attention graph convolution block (MSTA-GCB) is built which contains multiscale graphs in temporal and spatial dimensions. MSTA-GCB can simulate the motion relations of human body components at different scales where each scale corresponds to different granularity of annotation levels on the human skeleton. Then, static, globally-learned and attention-based adjacency matrices in the graph convolution module are proposed to capture hierarchical representation. Finally, extensive experiments are carried out on the ShanghaiTech Campus and CUHK Avenue datasets, the final results of the frame-level AUC/EER are 0.759/0.311 and 0.876/0.192, respectively. Moreover, the frame-level AUC is 0.768 for the human-related ShanghaiTech subset. These results show that our MSTA-GCN outperforms most of methods in video anomaly detection and we have obtained a new state-of-the-art performance in skeleton-based anomaly behavior detection.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Fanjia
    Li, Juanjuan
    Zhu, Aichun
    Xu, Yonggang
    Yin, Hongsheng
    Hua, Gang
    SENSORS, 2020, 20 (18) : 1 - 19
  • [32] Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Hang, Rui
    Li, MinXian
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 172 - 188
  • [33] Enhanced decoupling graph convolution network for skeleton-based action recognition
    Gu, Yue
    Yu, Qiang
    Xue, Wanli
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73289 - 73304
  • [34] Multilevel Spatial-Temporal Excited Graph Network for Skeleton-Based Action Recognition
    Zhu, Yisheng
    Shuai, Hui
    Liu, Guangcan
    Liu, Qingshan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 496 - 508
  • [35] An improved spatial temporal graph convolutional network for robust skeleton-based action recognition
    Yuling Xing
    Jia Zhu
    Yu Li
    Jin Huang
    Jinlong Song
    Applied Intelligence, 2023, 53 : 4592 - 4608
  • [36] Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
    Yang, Huaigang
    Ren, Ziliang
    Yuan, Huaqiang
    Wei, Wenhong
    Zhang, Qieshi
    Zhang, Zhaolong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [37] Combining Adaptive Graph Convolution and Temporal Modeling for Skeleton-Based Action Recognition
    Zhen, Haoyu
    Zhang, De
    Computer Engineering and Applications, 2023, 59 (18) : 137 - 144
  • [38] Skeleton-based action recognition with multi-stream, multi-scale dilated spatial-temporal graph convolution network
    Zhang, Haiping
    Liu, Xu
    Yu, Dongjin
    Guan, Liming
    Wang, Dongjing
    Ma, Conghao
    Hu, Zepeng
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17629 - 17643
  • [39] Skeleton-based action recognition with multi-stream, multi-scale dilated spatial-temporal graph convolution network
    Haiping Zhang
    Xu Liu
    Dongjin Yu
    Liming Guan
    Dongjing Wang
    Conghao Ma
    Zepeng Hu
    Applied Intelligence, 2023, 53 : 17629 - 17643
  • [40] On the spatial attention in spatio-temporal graph convolutional networks for skeleton-based human action recognition
    Heidari, Negar
    Iosifidis, Alexandros
    Proceedings of the International Joint Conference on Neural Networks, 2021, 2021-July