Spatial-temporal slowfast graph convolutional network for skeleton-based action recognition

被引:9
|
作者
Fang, Zheng [1 ]
Zhang, Xiongwei [1 ]
Cao, Tieyong [1 ,2 ]
Zheng, Yunfei [1 ]
Sun, Meng [1 ]
机构
[1] Peoples Liberat Army Engn Univ, Inst Command & Control Engn, Nanjing 210001, Jiangsu, Peoples R China
[2] Army Artillery & Def Acad PLA Nanjing, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
computer vision; graph theory; video signal processing; video signals;
D O I
10.1049/cvi2.12080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In skeleton-based action recognition, the graph convolutional network (GCN) has achieved great success. Modelling skeleton data in a suitable spatial-temporal way and designing the adjacency matrix are crucial aspects for GCN-based methods to capture joint relationships. In this study, we propose the spatial-temporal slowfast graph convolutional network (STSF-GCN) and design the adjacency matrices for the skeleton data graphs in STSF-GCN. STSF-GCN contains two pathways: (1) the fast pathway is in a high frame rate, and joints of adjacent frames are unified to build 'small' spatial-temporal graphs. A new spatial-temporal adjacency matrix is proposed for these 'small' spatial-temporal graphs. Ablation studies verify the effectiveness of the proposed adjacency matrix. (2) The slow pathway is in a low frame rate, and joints from all frames are unified to build one 'big' spatial-temporal graph. The adjacency matrix for the 'big' spatial-temporal graph is obtained by computing self-attention coefficients of each joint. Finally, outputs from two pathways are fused to predict the action category. STSF-GCN can efficiently capture both long-range and short-range spatial-temporal joint relationships. On three datasets for skeleton-based action recognition, STSF-GCN can achieve state-of-the-art performance with much less computational cost.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [1] Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Hang, Rui
    Li, MinXian
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 172 - 188
  • [2] Spatial Graph Convolutional and Temporal Involution Network for Skeleton-based Action Recognition
    Wan, Huifan
    Pan, Guanghui
    Chen, Yu
    Ding, Danni
    Zou, Maoyang
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 204 - 209
  • [3] Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition
    Wang, Shengqin
    Zhang, Yongji
    Qi, Hong
    Zhao, Minghao
    Jiang, Yu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2147 - 2152
  • [4] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [5] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [6] Dynamic spatial-temporal topology graph network for skeleton-based action recognition
    Chen, Lian
    Lu, Ke
    Niu, Zehai
    Wei, Runchen
    Xue, Jian
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [7] Multilevel Spatial-Temporal Excited Graph Network for Skeleton-Based Action Recognition
    Zhu, Yisheng
    Shuai, Hui
    Liu, Guangcan
    Liu, Qingshan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 496 - 508
  • [8] An improved spatial temporal graph convolutional network for robust skeleton-based action recognition
    Yuling Xing
    Jia Zhu
    Yu Li
    Jin Huang
    Jinlong Song
    Applied Intelligence, 2023, 53 : 4592 - 4608
  • [9] An improved spatial temporal graph convolutional network for robust skeleton-based action recognition
    Xing, Yuling
    Zhu, Jia
    Li, Yu
    Huang, Jin
    Song, Jinlong
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4592 - 4608
  • [10] Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Fanjia
    Li, Juanjuan
    Zhu, Aichun
    Xu, Yonggang
    Yin, Hongsheng
    Hua, Gang
    SENSORS, 2020, 20 (18) : 1 - 19