PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data

被引:8
|
作者
Wang, Bo [1 ]
Li, Hongtao [2 ]
Guo, Yina [1 ,3 ]
Wang, Jie [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Normal Univ, Coll Math & Comp Sci, Taiyuan 030039, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, 66 Waliu Rd, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Homomorphic encryption; Privacy; -preserving; Healthcare data;
D O I
10.1016/j.asoc.2023.110677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare data are characterized by explosive growth and value, which is the private data of patients, and its characteristics and storage environment have brought significant issues of data privacy and security. People are reluctant to share their data for privacy concerns during machine learning. To balance this contradiction, Federated Learning was proposed as a solution to train on private data without sharing it. However, many studies show that there is still the possibility of privacy leakage during the training process of federated learning. In light of this, we propose a privacy-preserving federated learning scheme with homomorphic encryption(PPFLHE). Specifically, on the client side, homomorphic encryption technology is used to encrypt the training model shared by users to ensure its security and privacy. In addition, to prevent internal attacks, Access Control (AC) technology is used to confirm the user's identity and judge whether it is trusted; on the server side, the Acknowledgment (ACK) mechanism is designed to remove the dropped or unresponsive users temporarily, which reduces the waiting delay and communication overhead, and solves the problem of user's exiting during training. Theoretical analysis and experimental results show that the proposed scheme achieves high data utility and classification accuracy (81.53%), and low communication delay while achieving privacy preserving, compared to state-of-the-art methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption
    Yonetani, Ryo
    Boddeti, Vishnu Naresh
    Kitani, Kris M.
    Sato, Yoichi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2059 - 2069
  • [42] Memory Efficient Privacy-Preserving Machine Learning Based on Homomorphic Encryption
    Podschwadt, Robert
    Ghazvinian, Parsa
    GhasemiGol, Mohammad
    Takabi, Daniel
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, ACNS 2024, PT II, 2024, 14584 : 313 - 339
  • [43] Privacy-Preserving Auction for Big Data Trading Using Homomorphic Encryption
    Gao, Weichao
    Yu, Wei
    Liang, Fan
    Hatcher, William Grant
    Lu, Chao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (02): : 776 - 791
  • [44] Labeled Homomorphic Encryption Scalable and Privacy-Preserving Processing of Outsourced Data
    Barbosa, Manuel
    Catalano, Dario
    Fiore, Dario
    COMPUTER SECURITY - ESORICS 2017, PT I, 2018, 10492 : 146 - 166
  • [45] Privacy-Preserving Search in Data Clouds Using Normalized Homomorphic Encryption
    Dawoud, Mohanad
    Altilar, D. Turgay
    EURO-PAR 2014: PARALLEL PROCESSING WORKSHOPS, PT II, 2014, 8806 : 62 - 72
  • [46] DPP: Data Privacy-Preserving for Cloud Computing based on Homomorphic Encryption
    Wang, Jing
    Wu, Fengheng
    Zhang, Tingbo
    Wu, Xiaohua
    2022 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, CYBERC, 2022, : 29 - 32
  • [47] Federated Learning-Based Privacy-Preserving Data Aggregation Scheme for IIoT
    Fan, Hongbin
    Huang, Changbing
    Liu, Yining
    IEEE ACCESS, 2023, 11 : 6700 - 6707
  • [48] An efficient blockchain-based privacy-preserving scheme with attribute and homomorphic encryption
    Xu, Guangxia
    Zhang, Jiajun
    Cliff, Uchani Gutierrez Omar
    Ma, Chuang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10715 - 10750
  • [49] Secure and privacy-preserving DRM scheme using homomorphic encryption in cloud computing
    HUANG Qin-long
    MA Zhao-feng
    YANG Yi-xian
    FU Jing-yi
    NIU Xin-xin
    The Journal of China Universities of Posts and Telecommunications, 2013, 20 (06) : 88 - 95
  • [50] Lightweight Privacy-Preserving Scheme Using Homomorphic Encryption in Industrial Internet of Things
    Li, Shancang
    Zhao, Shanshan
    Min, Geyong
    Qi, Lianyong
    Liu, Gang
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (16) : 14542 - 14550