PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data

被引:8
|
作者
Wang, Bo [1 ]
Li, Hongtao [2 ]
Guo, Yina [1 ,3 ]
Wang, Jie [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Normal Univ, Coll Math & Comp Sci, Taiyuan 030039, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, 66 Waliu Rd, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Homomorphic encryption; Privacy; -preserving; Healthcare data;
D O I
10.1016/j.asoc.2023.110677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare data are characterized by explosive growth and value, which is the private data of patients, and its characteristics and storage environment have brought significant issues of data privacy and security. People are reluctant to share their data for privacy concerns during machine learning. To balance this contradiction, Federated Learning was proposed as a solution to train on private data without sharing it. However, many studies show that there is still the possibility of privacy leakage during the training process of federated learning. In light of this, we propose a privacy-preserving federated learning scheme with homomorphic encryption(PPFLHE). Specifically, on the client side, homomorphic encryption technology is used to encrypt the training model shared by users to ensure its security and privacy. In addition, to prevent internal attacks, Access Control (AC) technology is used to confirm the user's identity and judge whether it is trusted; on the server side, the Acknowledgment (ACK) mechanism is designed to remove the dropped or unresponsive users temporarily, which reduces the waiting delay and communication overhead, and solves the problem of user's exiting during training. Theoretical analysis and experimental results show that the proposed scheme achieves high data utility and classification accuracy (81.53%), and low communication delay while achieving privacy preserving, compared to state-of-the-art methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Privacy-Preserving Data Exfiltration Monitoring Using Homomorphic Encryption
    Rohloff, Kurt
    2015 IEEE 2ND INTERNATIONAL CONFERENCE ON CYBER SECURITY AND CLOUD COMPUTING (CSCLOUD), 2015, : 48 - 53
  • [32] EPPDA: An Efficient Privacy-Preserving Data Aggregation Federated Learning Scheme
    Song, Jingcheng
    Wang, Weizheng
    Gadekallu, Thippa Reddy
    Cao, Jianyu
    Liu, Yining
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 3047 - 3057
  • [33] Privacy-Preserving Data Aggregation Scheme Based on Federated Learning for IIoT
    Fan, Hongbin
    Zhou, Zhi
    MATHEMATICS, 2023, 11 (01)
  • [34] Privacy-preserving collaboration in blockchain-enabled IoT: The synergy of modified homomorphic encryption and federated learning
    Anitha, Raja
    Murugan, Mahalingam
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2024,
  • [35] A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
    Yang, Wencheng
    Wang, Song
    Cui, Hui
    Tang, Zhaohui
    Li, Yan
    SENSORS, 2023, 23 (07)
  • [36] Privacy-Preserving Federated Learning via Functional Encryption, Revisited
    Chang, Yansong
    Zhang, Kai
    Gong, Junqing
    Qian, Haifeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1855 - 1869
  • [37] Privacy-preserving and scalable federated blockchain scheme for healthcare 4.0
    Salim, Mikail Mohammed
    Yang, Laurence Tianruo
    Park, Jong Hyuk
    COMPUTER NETWORKS, 2024, 247
  • [38] An efficient privacy-preserving and verifiable scheme for federated learning
    Yang, Xue
    Ma, Minjie
    Tang, Xiaohu
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 238 - 250
  • [39] Privacy Preserving Federated Learning: A Novel Approach for Combining Differential Privacy and Homomorphic Encryption
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 162 - 177
  • [40] Privacy-Preserving Fair Learning of Support Vector Machine with Homomorphic Encryption
    Park, Saerom
    Byun, Junyoung
    Lee, Joohee
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 3572 - 3583