PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data

被引:8
|
作者
Wang, Bo [1 ]
Li, Hongtao [2 ]
Guo, Yina [1 ,3 ]
Wang, Jie [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Normal Univ, Coll Math & Comp Sci, Taiyuan 030039, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, 66 Waliu Rd, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Homomorphic encryption; Privacy; -preserving; Healthcare data;
D O I
10.1016/j.asoc.2023.110677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare data are characterized by explosive growth and value, which is the private data of patients, and its characteristics and storage environment have brought significant issues of data privacy and security. People are reluctant to share their data for privacy concerns during machine learning. To balance this contradiction, Federated Learning was proposed as a solution to train on private data without sharing it. However, many studies show that there is still the possibility of privacy leakage during the training process of federated learning. In light of this, we propose a privacy-preserving federated learning scheme with homomorphic encryption(PPFLHE). Specifically, on the client side, homomorphic encryption technology is used to encrypt the training model shared by users to ensure its security and privacy. In addition, to prevent internal attacks, Access Control (AC) technology is used to confirm the user's identity and judge whether it is trusted; on the server side, the Acknowledgment (ACK) mechanism is designed to remove the dropped or unresponsive users temporarily, which reduces the waiting delay and communication overhead, and solves the problem of user's exiting during training. Theoretical analysis and experimental results show that the proposed scheme achieves high data utility and classification accuracy (81.53%), and low communication delay while achieving privacy preserving, compared to state-of-the-art methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Privacy-Preserving Authenticated Federated Learning Scheme for Smart Healthcare System
    Tu, Jun
    Shen, Gang
    EMERGING INFORMATION SECURITY AND APPLICATIONS, EISA 2023, 2024, 2004 : 38 - 57
  • [22] Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption
    Qiu, Fengyuan
    Yang, Hao
    Zhou, Lu
    Ma, Chuan
    Fang, LiMing
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 427 - 440
  • [23] A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption
    Arazzi, Marco
    Nicolazzo, Serena
    Nocera, Antonino
    INFORMATION SYSTEMS FRONTIERS, 2023, 27 (1) : 367 - 390
  • [24] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [25] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [26] Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
    David Froelicher
    Juan R. Troncoso-Pastoriza
    Jean Louis Raisaro
    Michel A. Cuendet
    Joao Sa Sousa
    Hyunghoon Cho
    Bonnie Berger
    Jacques Fellay
    Jean-Pierre Hubaux
    Nature Communications, 12
  • [27] Privacy-Preserving Deep Learning via Additively Homomorphic Encryption
    Phong, Le Trieu
    Aono, Yoshinori
    Hayashi, Takuya
    Wang, Lihua
    Moriai, Shiho
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (05) : 1333 - 1345
  • [28] Privacy-Preserving Deep Learning via Additively Homomorphic Encryption
    Moriai, Shiho
    2019 IEEE 26TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2019, : 198 - 198
  • [29] Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
    Froelicher, David
    Troncoso-Pastoriza, Juan R.
    Raisaro, Jean Louis
    Cuendet, Michel A.
    Sousa, Joao Sa
    Cho, Hyunghoon
    Berger, Bonnie
    Fellay, Jacques
    Hubaux, Jean-Pierre
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [30] Practical Privacy-Preserving Data Science With Homomorphic Encryption: An Overview
    Iezzi, Michela
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3979 - 3988