Wheel-structured Triboelectric Nanogenerators with Hyperelastic Networking for High-Performance Wave Energy Harvesting

被引:9
|
作者
Hu, Yuchen [1 ,2 ,3 ]
Qiu, Huijing [2 ,3 ]
Sun, Qijun [2 ,3 ,4 ]
Wang, Zhong Lin [2 ,3 ,5 ]
Xu, Liang [2 ,3 ,4 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[5] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
SMALL METHODS | 2023年 / 7卷 / 10期
基金
中国国家自然科学基金;
关键词
energy harvesting; hyperelasticity; triboelectric nanogenerators; wave energy; wheel structure; FREQUENCY; CLIMATE; ARRAY;
D O I
10.1002/smtd.202300582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing clean and renewable energy sources is an important strategy to reduce carbon emission and achieve carbon neutrality. As one of the most promising clean energy sources, large-scale, and efficient utilization of ocean blue energy remains a challenging problem to be solved. In this work, a hyperelastic network of wheel-structured triboelectric nanogenerators (WS-TENGs) is demonstrated to efficiently harvest low-frequency and small-amplitude wave energy. Different from traditional designs of smooth shell, the external blades on the TENG allow tighter interaction between the wave and the device, which can roll on the water surface like a wheel, continuously agitating internal TENGs. Moreover, the hyperelastic networking structure can stretch and shrink like a spring with stored wave energy, further intensifying the roll of the device, and connecting the WS-TENGs to form a large-scale network. Multiple driving modes with synergistic effects can be realized under wave and wind excitations. Self-powered systems are fabricated based on the WS-TENG network, showing the capability of the device in real wave environment. The work provides a new driving paradigm that can further enhance the energy harvesting capability toward large-scale blue energy utilization based on TENGs.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators
    Jin, Long
    Xiao, Xiao
    Deng, Weili
    Nashalian, Ardo
    He, Daren
    Raveendran, Vidhur
    Yan, Cheng
    Su, Hai
    Chu, Xiang
    Yang, Tao
    Li, Wen
    Yang, Weiqing
    Chen, Jun
    NANO LETTERS, 2020, 20 (09) : 6404 - 6411
  • [33] Enhanced Energy Harvesting Performance of Triboelectric Nanogenerators via Dielectric Property Regulation
    Han, Jin
    Wang, Yongfa
    Ma, Yanran
    Wang, Chunchang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (26) : 31795 - 31802
  • [34] Highly stretchable hydroxyapatite bionanocomposite for high-performance triboelectric nanogenerators
    Luu, Thien Trung
    Huynh, Nghia Dinh
    Kim, Hakjeong
    Lin, Zong-Hong
    Choi, Dukhyun
    NANOSCALE, 2023, 15 (34) : 14205 - 14214
  • [35] Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators
    Nurmakanov, Yerzhan
    Kalimuldina, Gulnur
    Nauryzbayev, Galymzhan
    Adair, Desmond
    Bakenov, Zhumabay
    NANOSCALE RESEARCH LETTERS, 2021, 16 (01):
  • [36] Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators
    Yerzhan Nurmakanov
    Gulnur Kalimuldina
    Galymzhan Nauryzbayev
    Desmond Adair
    Zhumabay Bakenov
    Nanoscale Research Letters, 16
  • [37] Perspectives of Material Optimization Strategies for High-Performance Triboelectric Nanogenerators
    Ji, Haifeng
    Sun, Cong
    Sun, Xuhui
    Wen, Zhen
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (05)
  • [38] Diamond-Structured Fabric-Based Triboelectric Nanogenerators for Energy Harvesting and Healthcare Application
    Ahmed, Taosif
    Gao, Yuanyuan
    So, Mei Yi
    Tan, Di
    Lu, Jian
    Zhang, Junze
    Wang, Qian
    Liu, Xinlong
    Xu, Bingang
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [39] Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives
    Rodrigues, C.
    Nunes, D.
    Clemente, D.
    Mathias, N.
    Correia, J. M.
    Rosa-Santos, P.
    Taveira-Pinto, F.
    Morais, T.
    Pereira, A.
    Ventura, J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) : 2657 - 2683
  • [40] Triboelectric Nanogenerators Using Recycled Disposable Medical Masks for Water Wave Energy Harvesting
    Liang, Xi
    Liu, Zhirong
    Han, Kai
    Liu, Shijie
    Xie, Yaxuan
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2024,