Wheel-structured Triboelectric Nanogenerators with Hyperelastic Networking for High-Performance Wave Energy Harvesting

被引:9
|
作者
Hu, Yuchen [1 ,2 ,3 ]
Qiu, Huijing [2 ,3 ]
Sun, Qijun [2 ,3 ,4 ]
Wang, Zhong Lin [2 ,3 ,5 ]
Xu, Liang [2 ,3 ,4 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[5] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
SMALL METHODS | 2023年 / 7卷 / 10期
基金
中国国家自然科学基金;
关键词
energy harvesting; hyperelasticity; triboelectric nanogenerators; wave energy; wheel structure; FREQUENCY; CLIMATE; ARRAY;
D O I
10.1002/smtd.202300582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing clean and renewable energy sources is an important strategy to reduce carbon emission and achieve carbon neutrality. As one of the most promising clean energy sources, large-scale, and efficient utilization of ocean blue energy remains a challenging problem to be solved. In this work, a hyperelastic network of wheel-structured triboelectric nanogenerators (WS-TENGs) is demonstrated to efficiently harvest low-frequency and small-amplitude wave energy. Different from traditional designs of smooth shell, the external blades on the TENG allow tighter interaction between the wave and the device, which can roll on the water surface like a wheel, continuously agitating internal TENGs. Moreover, the hyperelastic networking structure can stretch and shrink like a spring with stored wave energy, further intensifying the roll of the device, and connecting the WS-TENGs to form a large-scale network. Multiple driving modes with synergistic effects can be realized under wave and wind excitations. Self-powered systems are fabricated based on the WS-TENG network, showing the capability of the device in real wave environment. The work provides a new driving paradigm that can further enhance the energy harvesting capability toward large-scale blue energy utilization based on TENGs.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Torus structured triboelectric nanogenerator array for water wave energy harvesting
    Liu, Wenbo
    Xu, Liang
    Bu, Tianzhao
    Yang, Hang
    Liu, Guoxu
    Li, Wenjian
    Pang, Yaokun
    Hu, Chuxiong
    Zhang, Chi
    Cheng, Tinghai
    NANO ENERGY, 2019, 58 : 499 - 507
  • [42] A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting
    Xu, Qingyue
    Shang, Chenjing
    Ma, Haoxiang
    Hong, Quan
    Li, Changzheng
    Ding, Su
    Xue, Liang
    Sun, Xin
    Pan, Yuanchao
    Sugahara, Tohru
    Yalikun, Yaxiaer
    Lai, Ying-Chih
    Yang, Yang
    NANO ENERGY, 2023, 109
  • [43] Triboelectric Nanogenerators Based on the Archimedes Wave Swing for Water Wave Energy Harvesting: Physics Experiments and Simulations
    Yang, Shaohui
    Tang, Ping
    Huang, Yan
    Du, Zhichang
    Fan, Jianyu
    Xiao, Guohong
    ENERGY TECHNOLOGY, 2023, 11 (04)
  • [44] Enhancing energy harvesting performance of bilayered parylene triboelectric nanogenerators through interfacial polarization
    Kim, Minsoo P.
    Lee, Gunoh
    Noh, Byeongil
    Kim, Jaehyun
    Kwak, Min Sub
    Lee, Kyung Jin
    Ko, Hyunhyub
    NANO ENERGY, 2024, 119
  • [45] Recent advances on porous materials and structures for high-performance triboelectric nanogenerators
    Rastegardoost, Mohammad M.
    Tafreshi, Omid Aghababaei
    Saadatnia, Zia
    Ghaffari-Mosanenzadeh, Shahriar
    Park, Chul B.
    Naguib, Hani E.
    NANO ENERGY, 2023, 111
  • [46] The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators
    Wang, Yudi
    Duan, Jialong
    Yang, Xiya
    Liu, Liqiang
    Zhao, Leilei
    Tang, Qunwei
    NANO ENERGY, 2020, 69
  • [47] Metal Island Structure as a Power Booster for High-Performance Triboelectric Nanogenerators
    Ravichandran, Aravind Narain
    Ramuz, Marc
    Blayac, Sylvain
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (11)
  • [48] High-performance triboelectric nanogenerators based on the organic semiconductor copper phthalocyanine
    You, Zhongyuan
    Chang, Jiawei
    Li, Zezhong
    Lu, Tianyu
    Wang, Shuting
    Wang, Fang
    Hu, Bingxi
    Wang, Hai
    Li, Lian
    Fang, Weihai
    Liu, Ying
    NANOSCALE, 2021, 13 (47) : 20197 - 20204
  • [49] Coastal bridge infrastructure: energy-harvesting and sensing capabilities through magnetic structured triboelectric nanogenerators
    Nazar, Ali Matin
    Rayegani, Arash
    Rashidi, Maria
    Sardo, Fatemeh Rahimi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2024,
  • [50] Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting
    Zhang, Lu
    Su, Chen
    Cheng, Li
    Cui, Nuanyang
    Gu, Long
    Qin, Yong
    Yang, Rusen
    Zhou, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26824 - 26829