Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials

被引:11
|
作者
Ashida, Yuto [1 ,2 ]
Imamoglu, Atac [3 ]
Demler, Eugene [4 ]
机构
[1] Univ Tokyo, Dept Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo, Tokyo 1130033, Japan
[3] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会; 日本学术振兴会;
关键词
PHONON-POLARITONS;
D O I
10.1103/PhysRevLett.130.216901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ground-state properties and excitation energies of a quantum emitter can be modified in the ultrastrong coupling regime of cavity quantum electrodynamics (QED) where the light-matter interaction strength becomes comparable to the cavity resonance frequency. Recent studies have started to explore the possibility of controlling an electronic material by embedding it in a cavity that confines electromagnetic fields in deep subwavelength scales. Currently, there is a strong interest in realizing ultrastrong-coupling cavity QED in the terahertz (THz) part of the spectrum, since most of the elementary excitations of quantum materials are in this frequency range. We propose and discuss a promising platform to achieve this goal based on a two-dimensional electronic material encapsulated by a planar cavity consisting of ultrathin polar van der Waals crystals. As a concrete setup, we show that nanometer-thick hexagonal boron nitride layers should allow one to reach the ultrastrong coupling regime for single-electron cyclotron resonance in a bilayer graphene. The proposed cavity platform can be realized by a wide variety of thin dielectric materials with hyperbolic dispersions. Consequently, van der Waals heterostructures hold the promise of becoming a versatile playground for exploring the ultrastrong-coupling physics of cavity QED materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Layered van der Waals crystals with hyperbolic light dispersion
    Gjerding, M. N.
    Petersen, R.
    Pedersen, T. G.
    Mortensen, N. A.
    Thygesen, K. S.
    NATURE COMMUNICATIONS, 2017, 8
  • [32] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [33] Anisotropic polaritons in van der Waals materials
    Ma, Weiliang
    Shabbir, Babar
    Ou, Qingdong
    Dong, Yemin
    Chen, Huanyang
    Li, Peining
    Zhang, Xinliang
    Lu, Yuerui
    Bao, Qiaoliang
    INFOMAT, 2020, 2 (05) : 777 - 790
  • [34] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    ACS NANO, 2022, 16 (05) : 7144 - 7167
  • [35] High Entropy van der Waals Materials
    Ying, Tianping
    Yu, Tongxu
    Qi, Yanpeng
    Chen, Xiaolong
    Hosono, Hideo
    ADVANCED SCIENCE, 2022, 9 (30)
  • [36] Layered van der Waals crystals with hyperbolic light dispersion
    M. N. Gjerding
    R. Petersen
    T. G. Pedersen
    N. A. Mortensen
    K. S. Thygesen
    Nature Communications, 8
  • [37] Spatiotemporal beating and vortices of van der Waals hyperbolic polaritons
    Zhang, Tianning
    Yan, Qizhi
    Yang, Xiaosheng
    Ma, Weiliang
    Chen, Runkun
    Zhang, Xin
    Janzen, Eli
    Edgar, James H.
    Qiu, Cheng-Wei
    Zhang, Xinliang
    Li, Peining
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (12)
  • [38] Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials
    Dong-Hwan Choi
    Kyung-Ah Min
    Suklyun Hong
    Bum-Kyu Kim
    Myung-Ho Bae
    Ju-Jin Kim
    Scientific Reports, 11
  • [39] Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials
    Choi, Dong-Hwan
    Min, Kyung-Ah
    Hong, Suklyun
    Kim, Bum-Kyu
    Bae, Myung-Ho
    Kim, Ju-Jin
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Structural and quantum-state phase transition in van der Waals layered materials
    Yang, Heejun
    Kim, Sung Wng
    Chhowalla, Manish
    Lee, Young Hee
    NATURE PHYSICS, 2017, 13 (10) : 931 - 937