Layered van der Waals crystals with hyperbolic light dispersion

被引:90
|
作者
Gjerding, M. N. [1 ,2 ]
Petersen, R. [3 ,4 ]
Pedersen, T. G. [3 ,4 ]
Mortensen, N. A. [2 ,5 ,6 ]
Thygesen, K. S. [1 ,2 ]
机构
[1] Tech Univ Denmark, CAMD, Dept Phys, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, CNG, DK-2800 Lyngby, Denmark
[3] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[4] CNG, DK-9220 Aalborg, Denmark
[5] Univ Southern Denmark, Ctr Nano Opt, Campusvej 55, DK-5230 Odense M, Denmark
[6] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会; 欧盟地平线“2020”;
关键词
OPTICAL-PROPERTIES; REFLECTIVITY SPECTRA; SPONTANEOUS EMISSION; BAND-STRUCTURE; HETEROSTRUCTURES; TRANSITIONS; NITRIDE; MOS2;
D O I
10.1038/s41467-017-00412-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first-principles calculations, we extend the number of known naturally hyperbolic materials to the broad class of layered transition metal dichalcogenides (TMDs). The diverse electronic properties of the transition metal dichalcogenides result in a large variation of the hyperbolic frequency regimes ranging from the near-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Layered van der Waals crystals with hyperbolic light dispersion
    M. N. Gjerding
    R. Petersen
    T. G. Pedersen
    N. A. Mortensen
    K. S. Thygesen
    [J]. Nature Communications, 8
  • [2] Dispersion forces between weakly disordered van der Waals crystals
    von Milczewski, Jonas
    Tolsma, John R.
    [J]. PHYSICAL REVIEW B, 2021, 104 (12)
  • [3] Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement
    Babicheva, Viktoriia E.
    [J]. NANOMATERIALS, 2024, 14 (18)
  • [4] Magnetic properties of van der Waals layered single crystals DyOBr and SmOCl
    Pan, Feihao
    Xu, Daye
    Sun, Songnan
    Huang, Jiale
    Shang, Chenglin
    Shi, Bingxian
    Gui, Xuejuan
    Qin, Jianfei
    Wang, Hongliang
    Hao, Lijie
    Wang, Jinchen
    Liu, Juanjuan
    Zhang, Hongxia
    Cheng, Peng
    [J]. PHYSICAL REVIEW MATERIALS, 2024, 8 (07):
  • [5] Van der Waals Colloidal Crystals
    Cho, YongDeok
    Park, Sung Hun
    Kwon, Min
    Kim, Hyeon Ho
    Huh, Ji-Hyeok
    Lee, Seungwoo
    [J]. ADVANCED MATERIALS, 2024, 36 (23)
  • [6] Phonon Polaritons in Twisted Double-Layers of Hyperbolic van der Waals Crystals
    Zheng, Zebo
    Sun, Fengsheng
    Huang, Wuchao
    Jiang, Jingyao
    Zhan, Runze
    Ke, Yanlin
    Chen, Huanjun
    Deng, Shaozhi
    [J]. NANO LETTERS, 2020, 20 (07) : 5301 - 5308
  • [7] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    [J]. ACS Nano, 2022, 16 (05): : 7144 - 7167
  • [8] Hyperdislocations in van der Waals Layered Materials
    Ly, Thuc Hue
    Zhao, Jiong
    Keum, Dong Hoon
    Deng, Qingming
    Yu, Zhiyang
    Lee, Young Hee
    [J]. NANO LETTERS, 2016, 16 (12) : 7807 - 7813
  • [9] Superconductivity in a van der Waals layered quasicrystal
    Tokumoto Y.
    Hamano K.
    Nakagawa S.
    Kamimura Y.
    Suzuki S.
    Tamura R.
    Edagawa K.
    [J]. Nature Communications, 15 (1)
  • [10] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    [J]. ACS NANO, 2022, 16 (05) : 7144 - 7167