Layered van der Waals crystals with hyperbolic light dispersion

被引:91
|
作者
Gjerding, M. N. [1 ,2 ]
Petersen, R. [3 ,4 ]
Pedersen, T. G. [3 ,4 ]
Mortensen, N. A. [2 ,5 ,6 ]
Thygesen, K. S. [1 ,2 ]
机构
[1] Tech Univ Denmark, CAMD, Dept Phys, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, CNG, DK-2800 Lyngby, Denmark
[3] Aalborg Univ, Dept Phys & Nanotechnol, DK-9220 Aalborg, Denmark
[4] CNG, DK-9220 Aalborg, Denmark
[5] Univ Southern Denmark, Ctr Nano Opt, Campusvej 55, DK-5230 Odense M, Denmark
[6] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会; 欧盟地平线“2020”;
关键词
OPTICAL-PROPERTIES; REFLECTIVITY SPECTRA; SPONTANEOUS EMISSION; BAND-STRUCTURE; HETEROSTRUCTURES; TRANSITIONS; NITRIDE; MOS2;
D O I
10.1038/s41467-017-00412-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first-principles calculations, we extend the number of known naturally hyperbolic materials to the broad class of layered transition metal dichalcogenides (TMDs). The diverse electronic properties of the transition metal dichalcogenides result in a large variation of the hyperbolic frequency regimes ranging from the near-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Phonon Polaritons and Hyperbolic Response in van der Waals Materials
    Hu, Guangwei
    Shen, Jialiang
    Qiu, Cheng-Wei
    Alu, Andrea
    Dai, Siyuan
    [J]. ADVANCED OPTICAL MATERIALS, 2020, 8 (05):
  • [32] Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials
    Ashida, Yuto
    Imamoglu, Atac
    Demler, Eugene
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (21)
  • [33] WANNIER EXCITONS IN SIMPLE VAN DER WAALS CRYSTALS
    KNOX, RS
    [J]. RADIATION RESEARCH, 1963, 20 (01) : 77 - &
  • [34] Van der Waals interactions in cholesteric liquid crystals
    Issaenko, S.A.
    Harris, A.B.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (03): : 2777 - 2791
  • [35] Confinement of Gases and Polymers in Van Der Waals Crystals
    Sozzani, Piero
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C111 - C111
  • [36] Raman spectroscopy regulation in van der Waals crystals
    Zheng, Wei
    Zhu, Yanming
    Li, Fadi
    Huang, Feng
    [J]. PHOTONICS RESEARCH, 2018, 6 (11) : 991 - 995
  • [37] VAN DER WAALS INTERACTION AND PACKING OF MOLECULAR CRYSTALS
    GIGLIO, E
    LIQUORI, AM
    [J]. ACTA CRYSTALLOGRAPHICA, 1967, 22 : 437 - &
  • [38] Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals
    Alfaro-Mozaz, F. J.
    Rodrigo, S. G.
    Velez, S.
    Dolado, I
    Govyadinov, A.
    Alonso-Gonzalez, P.
    Casanova, F.
    Hueso, L. E.
    Martin-Moreno, L.
    Hillenbrand, R.
    Nikitin, A. Y.
    [J]. NANO LETTERS, 2021, 21 (17) : 7109 - 7115
  • [39] Average van der Waals radii of atoms in crystals
    Hu, SZ
    Zhou, ZH
    Tsai, KR
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2003, 19 (11) : 1073 - 1077
  • [40] van der Waals interactions in cholesteric liquid crystals
    Issaenko, SA
    Harris, AB
    [J]. PHYSICAL REVIEW E, 2000, 61 (03): : 2777 - 2791