Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials

被引:11
|
作者
Ashida, Yuto [1 ,2 ]
Imamoglu, Atac [3 ]
Demler, Eugene [4 ]
机构
[1] Univ Tokyo, Dept Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo, Tokyo 1130033, Japan
[3] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会; 日本学术振兴会;
关键词
PHONON-POLARITONS;
D O I
10.1103/PhysRevLett.130.216901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ground-state properties and excitation energies of a quantum emitter can be modified in the ultrastrong coupling regime of cavity quantum electrodynamics (QED) where the light-matter interaction strength becomes comparable to the cavity resonance frequency. Recent studies have started to explore the possibility of controlling an electronic material by embedding it in a cavity that confines electromagnetic fields in deep subwavelength scales. Currently, there is a strong interest in realizing ultrastrong-coupling cavity QED in the terahertz (THz) part of the spectrum, since most of the elementary excitations of quantum materials are in this frequency range. We propose and discuss a promising platform to achieve this goal based on a two-dimensional electronic material encapsulated by a planar cavity consisting of ultrathin polar van der Waals crystals. As a concrete setup, we show that nanometer-thick hexagonal boron nitride layers should allow one to reach the ultrastrong coupling regime for single-electron cyclotron resonance in a bilayer graphene. The proposed cavity platform can be realized by a wide variety of thin dielectric materials with hyperbolic dispersions. Consequently, van der Waals heterostructures hold the promise of becoming a versatile playground for exploring the ultrastrong-coupling physics of cavity QED materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Quantum sensing with optically accessible spin defects in van der Waals layered materials
    Fang, Hong-Hua
    Wang, Xiao-Jie
    Marie, Xavier
    Sun, Hong-Bo
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [42] Quantum Transport in van der Waals Junctions of Graphene and 2D Materials
    Machida, Tomoki
    2016 COMPOUND SEMICONDUCTOR WEEK (CSW) INCLUDES 28TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM) & 43RD INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS (ISCS), 2016,
  • [43] Near-Infrared Quantum Cascade Lasers Designed with van der Waals Materials
    Deng, Hai-Yao
    PHYSICAL REVIEW APPLIED, 2021, 16 (04)
  • [44] Quantum emitters and detectors based on 2D van der Waals materials
    Dastidar, Madhura Ghosh
    Thekkooden, Immanuel
    Nayak, Pramoda K.
    Bhallamudi, Vidya Praveen
    NANOSCALE, 2022, 14 (14) : 5289 - 5313
  • [45] Towards quantum light-emitting devices based on van der Waals materials
    Leyi Loh
    Junyong Wang
    Magdalena Grzeszczyk
    Maciej Koperski
    Goki Eda
    Nature Reviews Electrical Engineering, 2024, 1 (12): : 815 - 829
  • [46] Structural and quantum-state phase transitions in van der Waals layered materials
    Heejun Yang
    Sung Wng Kim
    Manish Chhowalla
    Young Hee Lee
    Nature Physics, 2017, 13 : 931 - 937
  • [47] Structural and quantum-state phase transition in van der Waals layered materials
    Yang H.
    Kim S.W.
    Chhowalla M.
    Lee Y.H.
    Yang, Heejun (h.yang@skku.edu), 1600, Nature Publishing Group (13): : 931 - 937
  • [48] Cavity quantum electrodynamics near dielectric materials
    Nha, H
    Jhe, W
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1998, 32 (03) : 342 - 346
  • [49] Ultrahigh-quality van der Waals hyperbolic polariton resonators
    Yu, Shang-Jie
    Jiang, Yue
    Roberts, John A.
    Huber, Markus A.
    Yao, Helen
    Shi, Xinjian
    Bechtel, Hans A.
    Corder, Stephanie N. G.
    Heinz, Tony F.
    Zheng, Xiaolin
    Fan, Jonathan A.
    HIGH CONTRAST METASTRUCTURES XI, 2022, 12011
  • [50] Quantum interference in a macroscopic van der Waals conductor
    Rischau, C. W.
    Wiedmann, S.
    Seyfarth, G.
    LeBoeuf, D.
    Behnia, K.
    Fauque, B.
    PHYSICAL REVIEW B, 2017, 95 (08)