Numerical Study on Physical Reservoir Computing With Josephson Junctions

被引:0
|
作者
Watanabe, Kohki [1 ]
Mizugaki, Yoshinao [2 ]
Moriya, Satoshi [3 ]
Yamamoto, Hideaki [1 ,3 ]
Yamashita, Taro [1 ]
Sato, Shigeo
机构
[1] Tohoku Univ, Grad Sch Engn, Sendai, Miyagi 9808579, Japan
[2] Univ Electrocommun, Grad Sch Informat & Engn, Chofu, Tokyo 1828585, Japan
[3] Tohoku Univ, Res Inst Elect Commun, Sendai, Miyagi 9808577, Japan
关键词
Reservoirs; Voltage; Task analysis; Neurons; Magnetic flux; Machine learning; Josephson junctions; Josephson junction; Single flux quantum; Reservoir computing; Physical reservoir;
D O I
10.1109/TASC.2024.3350576
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we propose reservoir computing, a novel machine learning framework, utilizing the Josephson transmission line (JTL) as a promising hardware candidate to realize low-power and high-speed computation. A two-dimensional JTL circuit is designed as a reservoir in accordance with a previous study, and digit image recognition tasks are demonstrated with the circuit. The simulation results show that noisy digit images are successfully classified with an accuracy of 80% at a rate of 50Gpixels/s . The power consumption of this system is estimated to be 12.8 mu W , which is comparable to that of spin reservoirs and optical reservoirs. Thus, we confirm that the proposed system has great potential for application in machine learning and AI processing.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [41] Physical reservoir computing-an introductory perspective
    Nakajima, Kohei
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (06)
  • [42] CMOS MEMS Resonator for Physical Reservoir Computing
    Chiu, Yi
    Tsai, Fang-Wei
    Wang, Liang-Kai
    Lee, Yuan-Chieh
    Garg, Manu
    Hong, Hao-Chiao
    2023 IEEE SENSORS, 2023,
  • [43] A perspective on physical reservoir computing with nanomagnetic devices
    Allwood, Dan A.
    Ellis, Matthew O. A.
    Griffin, David
    Hayward, Thomas J.
    Manneschi, Luca
    Musameh, Mohammad F. KH.
    O'Keefe, Simon
    Stepney, Susan
    Swindells, Charles
    Trefzer, Martin A.
    Vasilaki, Eleni
    Venkat, Guru
    Vidamour, Ian
    Wringe, Chester
    APPLIED PHYSICS LETTERS, 2023, 122 (04)
  • [44] Recent advances in physical reservoir computing: A review
    Tanaka, Gouhei
    Yamane, Toshiyuki
    Heroux, Jean Benoit
    Nakane, Ryosho
    Kanazawa, Naoki
    Takeda, Seiji
    Numata, Hidetoshi
    Nakano, Daiju
    Hirose, Akira
    NEURAL NETWORKS, 2019, 115 : 100 - 123
  • [45] Physical Reservoir Computing in a Music Hall Experiment
    Conrad, Bradley
    Marghitu, Dan
    Perkins, Edmon
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2025, 147 (02):
  • [46] Tradeoffs with physical delay feedback reservoir computing
    Gan, Tian
    Stepney, Susan
    Trefzer, Martin A.
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [47] Task-adaptive physical reservoir computing
    Lee O.
    Wei T.
    Stenning K.D.
    Gartside J.C.
    Prestwood D.
    Seki S.
    Aqeel A.
    Karube K.
    Kanazawa N.
    Taguchi Y.
    Back C.
    Tokura Y.
    Branford W.R.
    Kurebayashi H.
    Nature Materials, 2024, 23 (01) : 79 - 87
  • [48] Numerical Study of Parallel Optoelectronic Reservoir Computing to Enhance Nonlinear Channel Equalization
    Feng, Xingxing
    Zhang, Lu
    Pang, Xiaodan
    Gu, Xiazhen
    Yu, Xianbin
    PHOTONICS, 2021, 8 (10)
  • [49] Simulation Study of Physical Reservoir Computing by Nonlinear Deterministic Time Series Analysis
    Yamane, Toshiyuki
    Takeda, Seiji
    Nakano, Daiju
    Tanaka, Gouhei
    Nakane, Ryosho
    Hirose, Akira
    Nakagawa, Shigeru
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 639 - 647
  • [50] Numerical investigation of the magnetic flux static distributions in layered josephson junctions
    Hristov, Ivan G.
    Dimova, Stefka N.
    Boyadjiev, Todor L.
    INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2009, 3 (03) : 259 - 265