Simulation Study of Physical Reservoir Computing by Nonlinear Deterministic Time Series Analysis

被引:3
|
作者
Yamane, Toshiyuki [1 ]
Takeda, Seiji [1 ]
Nakano, Daiju [1 ]
Tanaka, Gouhei [2 ]
Nakane, Ryosho [2 ]
Hirose, Akira [2 ]
Nakagawa, Shigeru [1 ]
机构
[1] IBM Res Tokyo, Kawasaki, Kanagawa 2120032, Japan
[2] Univ Tokyo, Grad Sch Engn, Tokyo 1138656, Japan
关键词
Reservoir computing; Physical reservoir; Bifurcation phenomena; Takens' theorem; False nearest neighbours; Lang-Kobayashi equation;
D O I
10.1007/978-3-319-70087-8_66
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate dynamics of physical reservoir computing by numerical simulations. Our approach is based on nonlinear deterministic time series analysis such as Takens' theorem and false nearest neighbor methods. We show that this approach is useful for efficient design and implementation of physical reservoir computing systems where only partial information of the reservoir state is accessible. We take nonlinear laser dynamics subject to time delay as physical reservoir and show that the size of physical reservoir can be estimated by these method.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 50 条
  • [1] Parameter extraction with reservoir computing: Nonlinear time series analysis and application to industrial maintenance
    Thorne, Braden
    Jungling, Thomas
    Small, Michael
    Hodkiewicz, Melinda
    CHAOS, 2021, 31 (03)
  • [2] Second-order Time Delay Reservoir Computing for Nonlinear Time Series Problems
    Shi, Xinming
    Gao, Jiashi
    Minku, Leandro L.
    Yu, James J. Q.
    Yao, Xin
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] Time series analysis for financial indices using optical reservoir computing
    Qu Y.
    Lian H.
    Shao R.
    Liu J.
    Liu L.
    Yang J.
    Optical Engineering, 2024, 63 (05) : 54108
  • [4] Fractional integration and nonlinear deterministic trends in the analysis of time series data
    Gil-Alana, Luis A.
    Carcel, Hector
    APPLIED ECONOMICS LETTERS, 2017, 24 (14) : 991 - 994
  • [5] A comparative study of Reservoir Computing strategies for monthly time series prediction
    Wyffels, F.
    Schrauwen, B.
    NEUROCOMPUTING, 2010, 73 (10-12) : 1958 - 1964
  • [6] Reservoir Computing Hardware for Time Series Forecasting
    Skibinsky-Gitlin, E. S.
    Alomar, M. L.
    Isern, E.
    Roca, M.
    Canals, V.
    Rossello, J. L.
    2018 28TH INTERNATIONAL SYMPOSIUM ON POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION (PATMOS), 2018, : 133 - 139
  • [7] Time Series Clustering with Deep Reservoir Computing
    Atencia, Miguel
    Gallicchio, Claudio
    Joya, Gonzalo
    Micheli, Alessio
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 482 - 493
  • [8] Nonlinear Time Series Analysis: A High Performance Computing Approach
    Marin Carrion, Ismael
    Aguila Guerrero, Julio Jose
    Arias Antunez, Enrique
    Artigao Castillo, Maria del Mar
    Miralles Canals, Juan Jose
    ERCIM NEWS, 2010, (81): : 31 - 32
  • [9] Feedback-Driven Quantum Reservoir Computing for Time-Series Analysis
    Kobayashi, Kaito
    Fujii, Keisuke
    Yamamoto, Naoki
    PRX Quantum, 2024, 5 (04):
  • [10] Multivariate nonlinear time-series estimation using delay-based reservoir computing
    Escalona-Moran, M.
    Soriano, M. C.
    Garcia-Prieto, J.
    Fischer, I.
    Mirasso, C. R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13): : 2903 - 2912