Clustering and finite size effects in a two-species exclusion process

被引:2
|
作者
Chacko, J. [1 ]
Muhuri, S. [2 ]
Tripathy, G. [3 ,4 ]
机构
[1] Christian Coll, Angadical South PO, Chengannur 689122, Kerala, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[3] Inst Phys, Sachivalaya Marg,Sainik Sch PO, Bhubaneswar 751005, Odisha, India
[4] Homi Bhabha Natl Inst, Mumbai 400094, Maharashtra, India
关键词
Cellular and Subcellular biophysics; Driven diffusive systems; Theory; Modeling; Simulations;
D O I
10.1007/s12648-023-02880-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a two-species totally asymmetric exclusion process (TASEP) in 1D lattice in which the particles of both species move stochastically in opposite directions (with rate v) and switch directions stochastically (with rate alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) while adjacent a particle of either species. We focus on the cluster size distribution P(m), where a cluster is taken to be a contiguous set of sites occupied by either species, as a function of Q=v/alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=v/\alpha $$\end{document}. For a total density rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} of particles, in the limit Q -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \rightarrow 0$$\end{document}, the cluster size distribution is shown to be P(m)=1/rho-1e-m/ln rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m) = \left( 1/\rho - 1\right) e<^>{-m/\ln \rho }$$\end{document} and the mean cluster size ⟨m⟩=1/(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle = 1/(1-\rho )$$\end{document}, results which are independent of Q and are identical to those for the simple exclusion process. By contrast, in the opposite limit, Q >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\gg 1$$\end{document}, we find the average cluster size, ⟨m⟩proportional to Q1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle \propto Q<^>{1/2}$$\end{document}-similar to the that for the persistent exclusion process (PEP), although the cluster size distributions are different in both limits. We further find that, for a finite system with L sites, the probability distribution of cluster sizes exhibits a distinct peak which corresponds to the formation of a single cluster of size ms=rho L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\rm{s}} = \rho L$$\end{document}. However, this peak vanishes in the thermodynamic limit L ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L \rightarrow \infty $$\end{document}. Interestingly, the probability of this largest size cluster, P(ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m_{\rm{s}})$$\end{document}, for different L,rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L, \rho $$\end{document} and Q exhibits data collapse in terms of the scaled variable Qs equivalent to Q/L2 rho(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\rm{s}}\equiv Q/L<^>2 \rho (1-\rho )$$\end{document}. The statistical features of the clustering observed for this minimal model may be relevant for active particle systems in 1D.
引用
收藏
页码:1553 / 1560
页数:8
相关论文
共 50 条
  • [41] Condensation transitions in a two-species zero-range process
    Hanney, T
    Evans, MR
    PHYSICAL REVIEW E, 2004, 69 (01): : 8
  • [42] Coarsening dynamics in a two-species zero-range process
    Grosskinsky, S
    Hanney, T
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [43] Relaxation of a two-species magnetofluid and application to finite-β flowing plasmas
    Steinhauer, LC
    Ishida, A
    PHYSICS OF PLASMAS, 1998, 5 (07) : 2609 - 2622
  • [44] Competitive exclusion and coexistence in a general two-species stochastic chemostat model with Markov switching
    Zhu, Jialu
    Feng, Tao
    Qiu, Zhipeng
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [45] Global dynamics of a two-species clustering model with Lotka-Volterra competition
    Tao, Weirun
    Wang, Zhi-An
    Yang, Wen
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (04):
  • [46] Equilibria in a two-species fishery
    Breton, Michele
    Dahmouni, Ilyass
    Zaccour, Georges
    MATHEMATICAL BIOSCIENCES, 2019, 309 : 78 - 91
  • [47] FINITE ELEMENT ANALYSIS OF THE NONLOCAL DIFFUSION EFFECT IN A TWO-SPECIES CHEMOTAXIS SYSTEM
    Annamalai, Baskar
    Venugopal, Parthiban
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [48] Stability results for a nonlinear two-species competition model with size-structure
    Liu Yan
    He Ze-rong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (01) : 1 - 15
  • [49] Stability results for a nonlinear two-species competition model with size-structure
    LIU Yan
    HE Ze-rong
    Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (01) : 1 - 15
  • [50] Stability results for a nonlinear two-species competition model with size-structure
    Yan Liu
    Ze-rong He
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 1 - 15