Clustering and finite size effects in a two-species exclusion process

被引:2
|
作者
Chacko, J. [1 ]
Muhuri, S. [2 ]
Tripathy, G. [3 ,4 ]
机构
[1] Christian Coll, Angadical South PO, Chengannur 689122, Kerala, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[3] Inst Phys, Sachivalaya Marg,Sainik Sch PO, Bhubaneswar 751005, Odisha, India
[4] Homi Bhabha Natl Inst, Mumbai 400094, Maharashtra, India
关键词
Cellular and Subcellular biophysics; Driven diffusive systems; Theory; Modeling; Simulations;
D O I
10.1007/s12648-023-02880-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a two-species totally asymmetric exclusion process (TASEP) in 1D lattice in which the particles of both species move stochastically in opposite directions (with rate v) and switch directions stochastically (with rate alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) while adjacent a particle of either species. We focus on the cluster size distribution P(m), where a cluster is taken to be a contiguous set of sites occupied by either species, as a function of Q=v/alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=v/\alpha $$\end{document}. For a total density rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} of particles, in the limit Q -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \rightarrow 0$$\end{document}, the cluster size distribution is shown to be P(m)=1/rho-1e-m/ln rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m) = \left( 1/\rho - 1\right) e<^>{-m/\ln \rho }$$\end{document} and the mean cluster size ⟨m⟩=1/(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle = 1/(1-\rho )$$\end{document}, results which are independent of Q and are identical to those for the simple exclusion process. By contrast, in the opposite limit, Q >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\gg 1$$\end{document}, we find the average cluster size, ⟨m⟩proportional to Q1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle \propto Q<^>{1/2}$$\end{document}-similar to the that for the persistent exclusion process (PEP), although the cluster size distributions are different in both limits. We further find that, for a finite system with L sites, the probability distribution of cluster sizes exhibits a distinct peak which corresponds to the formation of a single cluster of size ms=rho L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\rm{s}} = \rho L$$\end{document}. However, this peak vanishes in the thermodynamic limit L ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L \rightarrow \infty $$\end{document}. Interestingly, the probability of this largest size cluster, P(ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m_{\rm{s}})$$\end{document}, for different L,rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L, \rho $$\end{document} and Q exhibits data collapse in terms of the scaled variable Qs equivalent to Q/L2 rho(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\rm{s}}\equiv Q/L<^>2 \rho (1-\rho )$$\end{document}. The statistical features of the clustering observed for this minimal model may be relevant for active particle systems in 1D.
引用
收藏
页码:1553 / 1560
页数:8
相关论文
共 50 条
  • [31] Phase diagram of the symbiotic two-species contact process
    de Oliveira, Marcelo Martins
    Dickman, Ronald
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [32] Effects of noise in symmetric two-species competition
    Vilar, JMG
    Sole, RV
    PHYSICAL REVIEW LETTERS, 1998, 80 (18) : 4099 - 4102
  • [33] Two-species totally asymmetric simple exclusion process model: From a simple description to intermittency and traveling traffic jams
    Bonnin, Pierre
    Stansfield, Ian
    Romano, M. Carmen
    Kern, Norbert
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [34] A biologically inspired two-species exclusion model: effects of RNA polymerase motor traffic on simultaneous DNA replication
    Ghosh, Soumendu
    Mishra, Bhavya
    Patra, Shubhadeep
    Schadschneider, Andreas
    Chowdhury, Debashish
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [35] Tagged particle correlations in the asymmetric simple exclusion process:: Finite-size effects
    Gupta, Shamik
    Majumdar, Satya N.
    Godreche, Claude
    Barma, Mustansir
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [36] FINITE-SIZE EFFECTS AND SHOCK FLUCTUATIONS IN THE ASYMMETRIC SIMPLE-EXCLUSION PROCESS
    JANOWSKY, SA
    LEBOWITZ, JL
    PHYSICAL REVIEW A, 1992, 45 (02): : 618 - 625
  • [37] Coupled two-species model for the pair contact process with diffusion
    Deng, Shengfeng
    Li, Wei
    Tauber, Uwe C.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [38] Hydrodynamic limits for a two-species reaction-diffusion process
    Perrut, A
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (01): : 163 - 191
  • [39] Steady state of a two-species annihilation process with separated reactants
    Urbano, Sasiri Juliana Vargas
    Gonzalez, Diego Luis
    Tellez, Gabriel
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [40] Lifetime and reproduction of a marked individual in a two-species competition process
    Gomez-Corral, A.
    Lopez-Garcia, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 223 - 245