Clustering and finite size effects in a two-species exclusion process

被引:2
|
作者
Chacko, J. [1 ]
Muhuri, S. [2 ]
Tripathy, G. [3 ,4 ]
机构
[1] Christian Coll, Angadical South PO, Chengannur 689122, Kerala, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[3] Inst Phys, Sachivalaya Marg,Sainik Sch PO, Bhubaneswar 751005, Odisha, India
[4] Homi Bhabha Natl Inst, Mumbai 400094, Maharashtra, India
关键词
Cellular and Subcellular biophysics; Driven diffusive systems; Theory; Modeling; Simulations;
D O I
10.1007/s12648-023-02880-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a two-species totally asymmetric exclusion process (TASEP) in 1D lattice in which the particles of both species move stochastically in opposite directions (with rate v) and switch directions stochastically (with rate alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) while adjacent a particle of either species. We focus on the cluster size distribution P(m), where a cluster is taken to be a contiguous set of sites occupied by either species, as a function of Q=v/alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=v/\alpha $$\end{document}. For a total density rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} of particles, in the limit Q -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \rightarrow 0$$\end{document}, the cluster size distribution is shown to be P(m)=1/rho-1e-m/ln rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m) = \left( 1/\rho - 1\right) e<^>{-m/\ln \rho }$$\end{document} and the mean cluster size ⟨m⟩=1/(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle = 1/(1-\rho )$$\end{document}, results which are independent of Q and are identical to those for the simple exclusion process. By contrast, in the opposite limit, Q >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\gg 1$$\end{document}, we find the average cluster size, ⟨m⟩proportional to Q1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle \propto Q<^>{1/2}$$\end{document}-similar to the that for the persistent exclusion process (PEP), although the cluster size distributions are different in both limits. We further find that, for a finite system with L sites, the probability distribution of cluster sizes exhibits a distinct peak which corresponds to the formation of a single cluster of size ms=rho L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\rm{s}} = \rho L$$\end{document}. However, this peak vanishes in the thermodynamic limit L ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L \rightarrow \infty $$\end{document}. Interestingly, the probability of this largest size cluster, P(ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m_{\rm{s}})$$\end{document}, for different L,rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L, \rho $$\end{document} and Q exhibits data collapse in terms of the scaled variable Qs equivalent to Q/L2 rho(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\rm{s}}\equiv Q/L<^>2 \rho (1-\rho )$$\end{document}. The statistical features of the clustering observed for this minimal model may be relevant for active particle systems in 1D.
引用
收藏
页码:1553 / 1560
页数:8
相关论文
共 50 条
  • [21] Open two-species exclusion processes with integrable boundaries
    Crampe, N.
    Mallick, K.
    Ragoucy, E.
    Vanicat, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (17)
  • [22] On Some Classes of Open Two-Species Exclusion Processes
    Ayyer, A.
    Lebowitz, J. L.
    Speer, E. R.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (01) : 157 - 176
  • [23] Integrability of two-species partially asymmetric exclusion processes
    Lobaskin, Ivan
    Evans, Martin R.
    Mallick, Kirone
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (16)
  • [24] Symbiotic two-species contact process
    de Oliveira, Marcelo Martins
    Dos Santos, Renato Vieira
    Dickman, Ronald
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [25] Two-Species Migration and Clustering in Two-Dimensional Domains
    Kurowski, Lawrence
    Krause, Andrew L.
    Mizuguchi, Hanako
    Grindrod, Peter
    Van Gorder, Robert A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (10) : 2302 - 2333
  • [26] Two-Species Migration and Clustering in Two-Dimensional Domains
    Lawrence Kurowski
    Andrew L. Krause
    Hanako Mizuguchi
    Peter Grindrod
    Robert A. Van Gorder
    Bulletin of Mathematical Biology, 2017, 79 : 2302 - 2333
  • [27] Exact Confirmation of 1D Nonlinear Fluctuating Hydrodynamics for a Two-Species Exclusion Process
    Chen, Zeying
    de Ger, Jan
    Hiki, Iori
    Sasamoto, Tomohiro
    PHYSICAL REVIEW LETTERS, 2018, 120 (24)
  • [28] T-Q relations for the integrable two-species asymmetric simple exclusion process with open boundaries
    Zhang, Xin
    Wen, Fakai
    de Gier, Jan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [29] Finite element analysis of a two-species chemotaxis system with two chemicals
    Hassan, Sattar M.
    Harfash, Akil J.
    APPLIED NUMERICAL MATHEMATICS, 2022, 182 : 148 - 175
  • [30] Mean-field analysis of two-species totally asymmetric simple exclusion process (TASEP) with attachment and detachment
    Song, Minghua
    Zhang, Yunxin
    CANADIAN JOURNAL OF PHYSICS, 2017, 95 (04) : 370 - 380