Clustering and finite size effects in a two-species exclusion process

被引:2
|
作者
Chacko, J. [1 ]
Muhuri, S. [2 ]
Tripathy, G. [3 ,4 ]
机构
[1] Christian Coll, Angadical South PO, Chengannur 689122, Kerala, India
[2] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India
[3] Inst Phys, Sachivalaya Marg,Sainik Sch PO, Bhubaneswar 751005, Odisha, India
[4] Homi Bhabha Natl Inst, Mumbai 400094, Maharashtra, India
关键词
Cellular and Subcellular biophysics; Driven diffusive systems; Theory; Modeling; Simulations;
D O I
10.1007/s12648-023-02880-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a two-species totally asymmetric exclusion process (TASEP) in 1D lattice in which the particles of both species move stochastically in opposite directions (with rate v) and switch directions stochastically (with rate alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}) while adjacent a particle of either species. We focus on the cluster size distribution P(m), where a cluster is taken to be a contiguous set of sites occupied by either species, as a function of Q=v/alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=v/\alpha $$\end{document}. For a total density rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} of particles, in the limit Q -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \rightarrow 0$$\end{document}, the cluster size distribution is shown to be P(m)=1/rho-1e-m/ln rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m) = \left( 1/\rho - 1\right) e<^>{-m/\ln \rho }$$\end{document} and the mean cluster size ⟨m⟩=1/(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle = 1/(1-\rho )$$\end{document}, results which are independent of Q and are identical to those for the simple exclusion process. By contrast, in the opposite limit, Q >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\gg 1$$\end{document}, we find the average cluster size, ⟨m⟩proportional to Q1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle m \rangle \propto Q<^>{1/2}$$\end{document}-similar to the that for the persistent exclusion process (PEP), although the cluster size distributions are different in both limits. We further find that, for a finite system with L sites, the probability distribution of cluster sizes exhibits a distinct peak which corresponds to the formation of a single cluster of size ms=rho L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{\rm{s}} = \rho L$$\end{document}. However, this peak vanishes in the thermodynamic limit L ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L \rightarrow \infty $$\end{document}. Interestingly, the probability of this largest size cluster, P(ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(m_{\rm{s}})$$\end{document}, for different L,rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L, \rho $$\end{document} and Q exhibits data collapse in terms of the scaled variable Qs equivalent to Q/L2 rho(1-rho)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\rm{s}}\equiv Q/L<^>2 \rho (1-\rho )$$\end{document}. The statistical features of the clustering observed for this minimal model may be relevant for active particle systems in 1D.
引用
收藏
页码:1553 / 1560
页数:8
相关论文
共 50 条
  • [1] Clustering and finite size effects in a two-species exclusion process
    Jim Chacko
    Sudipto Muhuri
    Goutam Tripathy
    Indian Journal of Physics, 2024, 98 (4) : 1553 - 1560
  • [2] Macdonald–Koornwinder moments and the two-species exclusion process
    Sylvie Corteel
    Lauren K. Williams
    Selecta Mathematica, 2018, 24 : 2275 - 2317
  • [3] TWO-SPECIES ASYMMETRIC EXCLUSION PROCESS WITH SITE SHARING
    Liu, Mingzhe
    Xiao, Song
    Wang, Ruili
    MODERN PHYSICS LETTERS B, 2010, 24 (08): : 707 - 716
  • [4] Dynamic screening in a two-species asymmetric exclusion process
    Kim, Kyung Hyuk
    den Nijs, Marcel
    PHYSICAL REVIEW E, 2007, 76 (02)
  • [5] Two-species asymmetric simple exclusion process with open boundaries
    Uchiyama, Masaru
    CHAOS SOLITONS & FRACTALS, 2008, 35 (02) : 398 - 407
  • [6] Orthogonal Polynomial Duality of a Two-Species Asymmetric Exclusion Process
    Blyschak, Danyil
    Burke, Olivia
    Kuan, Jeffrey
    Li, Dennis
    Ustilovsky, Sasha
    Zhou, Zhengye
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (05)
  • [7] Orthogonal Polynomial Duality of a Two-Species Asymmetric Exclusion Process
    Danyil Blyschak
    Olivia Burke
    Jeffrey Kuan
    Dennis Li
    Sasha Ustilovsky
    Zhengye Zhou
    Journal of Statistical Physics, 190
  • [8] Macdonald-Koornwinder moments and the two-species exclusion process
    Corteel, Sylvie
    Williams, Lauren K.
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (03): : 2275 - 2317
  • [9] Extinction times and size of the surviving species in a two-species competition process
    A. Gómez-Corral
    M. López García
    Journal of Mathematical Biology, 2012, 64 : 255 - 289
  • [10] Extinction times and size of the surviving species in a two-species competition process
    Gomez-Corral, A.
    Lopez Garcia, M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 64 (1-2) : 255 - 289