A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images

被引:10
|
作者
Nadkarni, Rohan [1 ]
Clark, Darin P. [1 ]
Allphin, Alex J. [1 ]
Badea, Cristian T. [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Radiol, Quantitat Imaging & Anal Lab, Durham, NC 27710 USA
关键词
denoising; deep learning; preclinical; micro-CT; photon-counting CT; contrast agents; CONVOLUTIONAL NEURAL-NETWORK; RECONSTRUCTION;
D O I
10.3390/tomography9040102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Photon-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.
引用
收藏
页码:1286 / 1302
页数:17
相关论文
共 50 条
  • [21] Deep learning for lithological classification of carbonate rock micro-CT images
    Carlos E. M. dos Anjos
    Manuel R. V. Avila
    Adna G. P. Vasconcelos
    Aurea M. Pereira Neta
    Lizianne C. Medeiros
    Alexandre G. Evsukoff
    Rodrigo Surmas
    Luiz Landau
    Computational Geosciences, 2021, 25 : 971 - 983
  • [22] Deep learning for lithological classification of carbonate rock micro-CT images
    dos Anjos, Carlos E. M.
    Avila, Manuel R. V.
    Vasconcelos, Adna G. P.
    Neta, Aurea M. Pereira
    Medeiros, Lizianne C.
    Evsukoff, Alexandre G.
    Surmas, Rodrigo
    Landau, Luiz
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (03) : 971 - 983
  • [23] Inpainting micro-CT images of fibrous materials using deep learning
    Karamov, Radmir
    Lomov, Stepan, V
    Sergeichev, Ivan
    Swolfs, Yentl
    Akhatov, Iskander
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [24] Photon-counting Detector CT with Deep Learning Noise Reduction to Detect Multiple Myeloma
    Baffour, Francis I.
    Huber, Nathan R.
    Ferrero, Andrea
    Rajendran, Kishore
    Glazebrook, Katrina N.
    Larson, Nicholas B.
    Kumar, Shaji
    Cook, Joselle M.
    Leng, Shuai
    Shanblatt, Elisabeth R.
    McCollough, Cynthia H.
    Fletcher, Joel G.
    RADIOLOGY, 2023, 306 (01) : 229 - 236
  • [25] Development of a Monte Carlo simulation platform for the systematic evaluation of photon-counting detector-based micro-CT
    Yang, Shiyan
    Xue, Mengjia
    Xie, Tianwu
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 126
  • [26] Deep-silicon photon-counting x-ray projection denoising through reinforcement learning
    Tanveer, Md Sayed
    Wiedeman, Christopher
    Li, Mengzhou
    Shi, Yongyi
    De Man, Bruno
    Maltz, Jonathan S.
    Wang, Ge
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (02) : 173 - 205
  • [27] High resolution micro-CT of low attenuating organic materials using large area photon-counting detector
    Kumpova, I.
    Vavrik, D.
    Fila, T.
    Koudelka, P.
    Jandejsek, I.
    Jakubek, J.
    Kytyr, D.
    Zlamal, P.
    Vopalensky, M.
    Gantar, A.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [28] Multi bin energy-sensitive micro-CT using large area photon-counting detectors Timepix
    Dudak, J.
    Zemlicka, J.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (01):
  • [29] Application of machine-learning models to improve the image quality of photon-counting CT images
    Toyoda, T.
    Sato, S.
    Kiji, H.
    Kataoka, J.
    Kotoku, J.
    Taki, M.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (05)
  • [30] Dual-contrast photon-counting micro-CT using iodine and a novel bismuth-based contrast agent
    Amato, Carlo
    Susenburger, Markus
    Lehr, Samuel
    Kuntz, Jan
    Gehrke, Nicole
    Franke, Danielle
    Thuering, Thomas
    Briel, Andreas
    Broennimann, Christian
    Kachelriess, Marc
    Sawall, Stefan
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (13):