A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images

被引:10
|
作者
Nadkarni, Rohan [1 ]
Clark, Darin P. [1 ]
Allphin, Alex J. [1 ]
Badea, Cristian T. [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Radiol, Quantitat Imaging & Anal Lab, Durham, NC 27710 USA
关键词
denoising; deep learning; preclinical; micro-CT; photon-counting CT; contrast agents; CONVOLUTIONAL NEURAL-NETWORK; RECONSTRUCTION;
D O I
10.3390/tomography9040102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Photon-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.
引用
收藏
页码:1286 / 1302
页数:17
相关论文
共 50 条
  • [41] Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT
    Lowe, Chiara
    Ortega-Gil, Ana
    Moghiseh, Mahdieh
    Anderson, Nigel G.
    Munoz-Barrutia, Arrate
    Vaquero, Juan Jose
    Raja, Aamir Y.
    Matanaghi, Aysouda
    Chernoglazov, Alexander I.
    Dapamede, Theodorus
    Adebileje, Sikiru A
    Alexander, Steven
    Amma, Maya R.
    Anjomrouz, Marzieh
    Asghariomabad, Fatemeh
    Atharifard, Ali
    Atlas, James
    Baer, Kenzie
    Bell, Stephen T.
    Bheesette, Srinidhi
    Butler, Philip H.
    Carbonez, Pierre
    Chambers, Claire
    Chapagain, Krishna M.
    Clark, Jennifer A.
    Colgan, Frances
    Crighton, Jonathan S.
    Dahal, Shishir
    Damet, Jerome
    De Ruiter, Niels J. A.
    Doesburg, Robert M. N.
    Duncan, Neryda
    Ghodsian, Nooshin
    Gieseg, Steven P.
    Goulter, Brian P.
    Gurney, Sam
    Healy, Joseph L.
    Kanithi, Praveen Kumar
    Kirkbride, Tracy
    Lansley, Stuart P.
    Mandalika, V.B.H.
    Marfo, Emmanuel
    Palmer, David
    Panta, Raj K.
    Prebble, Hannah M.
    Renaud, Peter
    Sayous, Yann
    Schleich, Nanette
    Searle, Emily
    Sheeja, Jereena S.
    IEEE Access, 2021, 9 : 67201 - 67208
  • [42] Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT
    Lowe, Chiara
    Ortega-Gil, Ana
    Moghiseh, Mahdieh
    Anderson, Nigel G.
    Munoz-Barrutia, Arrate
    Vaquero, Juan Jose
    Raja, Aamir Y.
    Matanaghi, Aysouda
    Chernoglazov, Alexander I.
    Dapamede, Theodorus
    Adebileje, Sikiru A.
    Alexander, Steven
    Amma, Maya R.
    Anjomrouz, Marzieh
    Asghariomabad, Fatemeh
    Atharifard, Ali
    Atlas, James
    Baer, Kenzie
    Bell, Stephen T.
    Bheesette, Srinidhi
    Butler, Philip H.
    Carbonez, Pierre
    Chambers, Claire
    Chapagain, Krishna M.
    Clark, Jennifer A.
    Colgan, Frances
    Crighton, Jonathan S.
    Dahal, Shishir
    Damet, Jerome
    De Ruiter, Niels J. A.
    Doesburg, Robert M. N.
    Duncan, Neryda
    Ghodsian, Nooshin
    Gieseg, Steven P.
    Goulter, Brian P.
    Gurney, Sam
    Healy, Joseph L.
    Kanithi, Praveen Kumar
    Kirkbride, Tracy
    Lansley, Stuart P.
    Mandalika, V. B. H.
    Marfo, Emmanuel
    Palmer, David
    Panta, Raj K.
    Prebble, Hannah M.
    Renaud, Peter
    Sayous, Yann
    Schleich, Nanette
    Searle, Emily
    Sheeja, Jereena S.
    IEEE ACCESS, 2021, 9 : 67201 - 67208
  • [43] PoreSkel: Skeletonization of grayscale micro-CT images of porous media using deep learning techniques
    Mahdaviara, Mehdi
    Sharifi, Mohammad
    Raoof, Amir
    ADVANCES IN WATER RESOURCES, 2023, 180
  • [44] The first mobile photon-counting detector CT: the human images and technical performance study
    Park, Su-Jin
    Park, Junyoung
    Kim, Doil
    Lee, Duhgoon
    Lee, Chang-Lae
    Bechwati, Ibrahim
    Wu, Dufan
    Gupta, Rajiv
    Jung, Jinwook
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (09):
  • [45] Deep Learning-Based Quantification of Gold Nanoparticles in Spectral Photon-Counting
    Behouch, A.
    Ibrahim, Y. O.
    Maalej, N.
    Raja, A. Y.
    Azizi, H.
    Werghi, N.
    MEDICAL PHYSICS, 2024, 51 (10) : 7859 - 7860
  • [46] Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence
    Martin J. Willemink
    Akos Varga-Szemes
    U. Joseph Schoepf
    Marina Codari
    Koen Nieman
    Dominik Fleischmann
    Domenico Mastrodicasa
    European Radiology Experimental, 5
  • [47] Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence
    Willemink, Martin J.
    Varga-Szemes, Akos
    Schoepf, U. Joseph
    Codari, Marina
    Nieman, Koen
    Fleischmann, Dominik
    Mastrodicasa, Domenico
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
  • [48] A Ring Artifact Correction Method: Validation by Micro-CT Imaging with Flat-Panel Detectors and a 2D Photon-Counting Detector
    Eldib, Mohamed Elsayed
    Hegazy, Mohamed
    Mun, Yang Ji
    Cho, Myung Hye
    Cho, Min Hyoung
    Lee, Soo Yeol
    SENSORS, 2017, 17 (02)
  • [49] Detailed Images of Deep Brain Stimulation Leads Using Micro-CT
    Billoud, Thomas
    Reinacher, Peter Christoph
    Weigt, Moritz
    von Elverfeldt, Dominik
    Demerath, Theo
    Pichotka, Martin
    STEREOTACTIC AND FUNCTIONAL NEUROSURGERY, 2025, 103 (01)
  • [50] Machine Learning Approach to the Synthesis of Identification Procedures for Modern Photon-Counting Sensors
    Antsiperov, Viacheslav
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 814 - 821