Topological marker approach to an interacting Su-Schrieffer-Heeger model

被引:3
|
作者
Melo, Pedro B. [1 ,2 ]
Junior, Sebastiao A. S. [2 ]
Chen, Wei [1 ]
Mondaini, Rubem [3 ]
Paiva, Thereza [2 ]
机构
[1] Pontificia Univ Catolica Rio De Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio De Janeiro, Inst Fis, Cx P 68-528, BR-21945 Rio De Janeiro, RJ, Brazil
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
关键词
BOUNDARY-CONDITIONS; BERRYS PHASE; INSULATORS; SYSTEMS;
D O I
10.1103/PhysRevB.108.195151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The topological properties of the Su-Schrieffer-Heeger (SSH) model in the presence of nearest-neighbor interaction are investigated by means of a topological marker, generalized from a noninteracting one by utilizing the single-particle Green's function of the many-body ground state. We find that despite the marker not being perfectly quantized in the presence of interactions, it always remains finite in the topologically nontrivial phase while converging to zero in the trivial phase when approaching the thermodynamic limit, and hence correctly judges the topological phases in the presence of interactions. The marker also correctly captures the interaction-driven, second-order phase transitions between a topological phase and a Landau-ordered phase, which is a charge-density wave order in our model with a local-order parameter, as confirmed by the calculation of entanglement entropy and the many-body Zak phase. Our paper thus points to the possibility of generalizing topological markers to interacting systems through Green's function, which may be feasible for topological insulators in any dimension and symmetry class.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Light bullets in Su-Schrieffer-Heeger photonic topological insulators
    Ivanov, Sergey K.
    Kartashov, Yaroslav V.
    Torner, Lluis
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [32] Tunable topological edge modes in Su-Schrieffer-Heeger arrays
    Chaplain, G. J.
    Gliozzi, A. S.
    Davies, B.
    Urban, D.
    Descrovi, E.
    Bosia, F.
    Craster, R. V.
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [33] Topological quantum interference in a pumped Su-Schrieffer-Heeger lattice
    Li, Zeng-Zhao
    Atalaya, Juan
    Whaley, K. Birgitta
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [34] Topological invariants for the Haldane phase of interacting Su-Schrieffer-Heeger chains: Functional renormalization-group approach
    Sbierski, Bjoern
    Karrasch, Christoph
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [35] Topological solitons in coupled Su-Schrieffer-Heeger waveguide arrays
    Sabour, Khalil
    Kartashov, Yaroslav V.
    OPTICS LETTERS, 2024, 49 (13) : 3580 - 3583
  • [36] Topological semimetal phase in non-Hermitian Su-Schrieffer-Heeger model
    Li, Jia-Jie
    Li, Jing-Quan
    Yan, Yu
    Cao, Ji
    Cui, Wen-Xue
    Zhang, Shou
    Wang, Hong-Fu
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [37] Topological Properties of an Extend Su-Schrieffer-Heeger Model Under Periodic Kickings
    Chun-Fang Li
    Li-Na Luan
    Lin-Cheng Wang
    International Journal of Theoretical Physics, 2020, 59 : 2852 - 2866
  • [38] Topological gap solitons in Rabi Su-Schrieffer-Heeger lattices
    Li, Chunyan
    Kartashov, Yaroslav V.
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [39] Topological edge breathers in a nonlinear Su-Schrieffer-Heeger lattice
    Johansson, Magnus
    PHYSICS LETTERS A, 2023, 458
  • [40] Topological transitions in dissipatively coupled Su-Schrieffer-Heeger models
    Nair, Jayakrishnan M. P.
    Scully, Marlan O.
    Agarwal, Girish S.
    PHYSICAL REVIEW B, 2023, 108 (18)