Topological marker approach to an interacting Su-Schrieffer-Heeger model

被引:3
|
作者
Melo, Pedro B. [1 ,2 ]
Junior, Sebastiao A. S. [2 ]
Chen, Wei [1 ]
Mondaini, Rubem [3 ]
Paiva, Thereza [2 ]
机构
[1] Pontificia Univ Catolica Rio De Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio De Janeiro, Inst Fis, Cx P 68-528, BR-21945 Rio De Janeiro, RJ, Brazil
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
关键词
BOUNDARY-CONDITIONS; BERRYS PHASE; INSULATORS; SYSTEMS;
D O I
10.1103/PhysRevB.108.195151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The topological properties of the Su-Schrieffer-Heeger (SSH) model in the presence of nearest-neighbor interaction are investigated by means of a topological marker, generalized from a noninteracting one by utilizing the single-particle Green's function of the many-body ground state. We find that despite the marker not being perfectly quantized in the presence of interactions, it always remains finite in the topologically nontrivial phase while converging to zero in the trivial phase when approaching the thermodynamic limit, and hence correctly judges the topological phases in the presence of interactions. The marker also correctly captures the interaction-driven, second-order phase transitions between a topological phase and a Landau-ordered phase, which is a charge-density wave order in our model with a local-order parameter, as confirmed by the calculation of entanglement entropy and the many-body Zak phase. Our paper thus points to the possibility of generalizing topological markers to interacting systems through Green's function, which may be feasible for topological insulators in any dimension and symmetry class.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Topological ventilated sound switch from acoustic Su-Schrieffer-Heeger model
    Li, Qinhong
    Xiang, Xiao
    Wang, Li
    Huang, Yingzhou
    Wu, Xiaoxiao
    APPLIED PHYSICS LETTERS, 2023, 122 (19)
  • [42] Topological Properties of an Extend Su-Schrieffer-Heeger Model Under Periodic Kickings
    Li, Chun-Fang
    Luan, Li-Na
    Wang, Lin-Cheng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (09) : 2852 - 2866
  • [43] Boundary-induced topological transition in an open Su-Schrieffer-Heeger model
    Bissonnette, Alexei
    Delnour, Nicolas
    Mckenna, Andrew
    Eleuch, Hichem
    Hilke, Michael
    Mackenzie, Richard
    PHYSICAL REVIEW B, 2024, 109 (07)
  • [44] Renormalized phonon spectrum in the Su-Schrieffer-Heeger model
    Fomichev, Stepan
    Berciu, Mona
    JOURNAL OF PHYSICS-MATERIALS, 2023, 6 (03):
  • [45] PHONON MODES IN THE SU-SCHRIEFFER-HEEGER MODEL FOR POLYACETYLENE
    CHAO, KA
    WANG, YL
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (36): : 1127 - 1132
  • [46] Magnonic Su-Schrieffer-Heeger model in honeycomb ferromagnets
    Li, Yu-Hang
    Cheng, Ran
    PHYSICAL REVIEW B, 2021, 103 (01)
  • [47] Robustness of antiferromagnetism in the Su-Schrieffer-Heeger Hubbard model
    Cai, Xun
    Li, Zi-Xiang
    Yao, Hong
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [48] Su-Schrieffer-Heeger model with imaginary gauge field
    Oztas, Z.
    Candemir, N.
    PHYSICS LETTERS A, 2019, 383 (15) : 1821 - 1824
  • [49] Topological edge solitons in the non-Hermitian nonlinear Su-Schrieffer-Heeger model
    Bocharov, A. A.
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [50] Macroscopic Zeno Effect in a Su-Schrieffer-Heeger Photonic Topological Insulator
    Ivanov, Sergey K.
    Zhuravitskii, Sergei A.
    Skryabin, Nikolay N.
    Dyakonov, Ivan V.
    Kalinkin, Alexander A.
    Kulik, Sergei P.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zadkov, Victor N.
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)