Topological semimetal phase in non-Hermitian Su-Schrieffer-Heeger model

被引:2
|
作者
Li, Jia-Jie [1 ]
Li, Jing-Quan [1 ]
Yan, Yu [2 ]
Cao, Ji [1 ]
Cui, Wen-Xue [1 ]
Zhang, Shou [1 ]
Wang, Hong-Fu [1 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Phys, Yanji 133002, Jilin, Peoples R China
[2] Harbin Inst Technol, Sch Phys, Harbin 150001, Heilongjiang, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 02期
基金
中国国家自然科学基金;
关键词
topological semimetal phase; disorder; exceptional point; QUANTUM; MATTER;
D O I
10.1088/1367-2630/ad223e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore the non-Hermitian Su-Schrieffer-Heeger model with long-range hopping and off-diagonal disorders. In the non-Hermitian clean limit, we find that the phase diagram holds topological semimetal phase with exceptional points except the normal insulator phase and the topological insulator phase. Interestingly, it is found that the topological semimetal phase is induced by long-range nonreciprocal term when the long-range hopping is not equal to the intercell hopping. Especially, we show the existence of topological semimetal phase with exceptional points and determine the transition point analytically and numerically under the Hermitian clean limit when the long-range hopping is equal to the intercell hopping. Furthermore, we also investigate the effects of the disorders on topological semimetal phase, and show that the disorders can enhance the region of topological semimetal phase in contrast to the case of non-Hermitian clean limit, indicating that it is beneficial to topological semimetal phase whether there is one disorder or two disorders in the system, that is, the topological semimetal phase is stable against the disorders in this one-dimensional non-Hermitian system. Our work provides an alternative avenue for studying topological semimetal phase in non-Hermitian lattice systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
    Lieu, Simon
    PHYSICAL REVIEW B, 2018, 97 (04)
  • [2] Topological phase transition of the extended non-Hermitian Su-Schrieffer-Heeger model
    Li, Shuai
    Liu, Min
    Li, Fuli
    Liu, Bo
    PHYSICA SCRIPTA, 2021, 96 (01)
  • [3] An unusual phase transition in a non-Hermitian Su-Schrieffer-Heeger model
    Niveth, A.
    Karthiga, S.
    Senthilvelan, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (07)
  • [4] Topological edge solitons in the non-Hermitian nonlinear Su-Schrieffer-Heeger model
    Bocharov, A. A.
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [5] Topological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger model
    Vyas, Vivek M.
    Roy, Dibyendu
    PHYSICAL REVIEW B, 2021, 103 (07)
  • [6] Topological Phase Transition and Eigenstates Localization in a Generalized Non-Hermitian Su-Schrieffer-Heeger Model
    Zhang, Zhi-Xu
    Huang, Rong
    Qi, Lu
    Xing, Yan
    Zhang, Zhan-Jun
    Wang, Hong-Fu
    ANNALEN DER PHYSIK, 2021, 533 (01)
  • [7] Topological properties in non-Hermitian tetratomic Su-Schrieffer-Heeger lattices
    Li, Jia-Rui
    Zhang, Lian-Lian
    Cui, Wei-Bin
    Gong, Wei-Jiang
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [8] Nonlinear dynamics of the non-Hermitian Su-Schrieffer-Heeger model
    Gunnink, Pieter M.
    Flebus, Benedetta
    Hurst, Hilary M.
    Duine, Rembert A.
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [9] Topological states in a non-Hermitian two-dimensional Su-Schrieffer-Heeger model
    Yuce, C.
    Ramezani, H.
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [10] Topological phases of commensurate or incommensurate non-Hermitian Su-Schrieffer-Heeger lattices
    Jangjan, Milad
    Li, Linhu
    Torres, Luis E. F. Foa
    Hosseini, Mir Vahid
    PHYSICAL REVIEW B, 2024, 109 (20)