Topological phases of commensurate or incommensurate non-Hermitian Su-Schrieffer-Heeger lattices

被引:1
|
作者
Jangjan, Milad [1 ]
Li, Linhu [2 ,3 ]
Torres, Luis E. F. Foa [4 ]
Hosseini, Mir Vahid [1 ]
机构
[1] Univ Zanjan, Fac Sci, Dept Phys, Zanjan 4537138791, Iran
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[4] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago 8370415, Chile
基金
中国国家自然科学基金;
关键词
STATES; REALITY;
D O I
10.1103/PhysRevB.109.205142
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate topological features of a one-dimensional Su-Schrieffer-Heeger lattice with modulating non-Hermitian on -site potentials containing four sublattices per unit cell. The lattice can be either commensurate or incommensurate. In the former case, the entire lattice can be mapped by supercells completely. While in the latter case, there are two extra lattice points, thereby making the last cell incomplete. We find that an anti- PT transition occurs at exceptional points of edge states at certain parameters, which does not coincide with the conventional topological phase transition characterized by the Berry phase, provided the imaginary on -site potential is large enough. Interestingly, when the potential exceeds a critical value, edge states appear even in the regime with a trivial Berry phase. To characterize these novel edge states we present topological invariants associated with the system's parity. Finally, we analyze the dynamics for initial states with different spatial distributions, which exhibit distinct dynamics for the commensurate and incommensurate cases, depending on the imaginary part of edge state energy.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
    Lieu, Simon
    [J]. PHYSICAL REVIEW B, 2018, 97 (04)
  • [2] Topological properties in non-Hermitian tetratomic Su-Schrieffer-Heeger lattices
    Li, Jia-Rui
    Zhang, Lian-Lian
    Cui, Wei-Bin
    Gong, Wei-Jiang
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [3] Topological semimetal phase in non-Hermitian Su-Schrieffer-Heeger model
    Li, Jia-Jie
    Li, Jing-Quan
    Yan, Yu
    Cao, Ji
    Cui, Wen-Xue
    Zhang, Shou
    Wang, Hong-Fu
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [4] Topological edge solitons in the non-Hermitian nonlinear Su-Schrieffer-Heeger model
    Bocharov, A. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 172
  • [5] Topological phase transition of the extended non-Hermitian Su-Schrieffer-Heeger model
    Li, Shuai
    Liu, Min
    Li, Fuli
    Liu, Bo
    [J]. PHYSICA SCRIPTA, 2021, 96 (01)
  • [6] Topological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger model
    Vyas, Vivek M.
    Roy, Dibyendu
    [J]. PHYSICAL REVIEW B, 2021, 103 (07)
  • [7] Nonlinear dynamics of the non-Hermitian Su-Schrieffer-Heeger model
    Gunnink, Pieter M.
    Flebus, Benedetta
    Hurst, Hilary M.
    Duine, Rembert A.
    [J]. PHYSICAL REVIEW B, 2022, 105 (10)
  • [8] Quantum metric of non-Hermitian Su-Schrieffer-Heeger systems
    Ye, Chao Chen
    Vleeshouwers, W. L.
    Heatley, S.
    Gritsev, V.
    Smith, C. Morais
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [9] Non-Hermitian generalizations of extended Su-Schrieffer-Heeger models
    He, Yan
    Chien, Chih-Chun
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (08)
  • [10] Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger
    Liu Jia-Lin
    Pang Ting-Fang
    Yang Xiao-Sen
    Wang Zheng-Ling
    [J]. ACTA PHYSICA SINICA, 2022, 71 (22)