The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer

被引:2
|
作者
van den Berg, Ingeborg [1 ,2 ,3 ]
Soeterik, Timo F. W. [1 ,2 ]
van der Hoeven, Erik J. R. J. [4 ]
Claassen, Bart [5 ]
Brink, Wyger M. [3 ]
Baas, Diederik J. H. [6 ]
Sedelaar, J. P. Michiel [7 ]
Heine, Lizette [8 ]
Tol, Jim [8 ]
van Zyp, Jochem R. N. van der Voort [2 ]
van den Berg, Cornelis A. T. [2 ]
van den Bergh, Roderick C. N. [1 ]
van Basten, Jean-Paul A. [6 ,7 ]
van Melick, Harm H. E. [1 ]
机构
[1] St Antonius Hosp, Dept Urol, NL-3435 CM Nieuwegein, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiat Oncol, Div Imaging & Oncol, NL-3584 CX Utrecht, Netherlands
[3] Univ Twente, Tech Med Ctr, Magnet Detect & Imaging Grp, NL-7522 NH Enschede, Netherlands
[4] St Antonius Hosp, Dept Radiol, NL-3435 CM Nieuwegein, Netherlands
[5] Canisius Wilhelmina Hosp, Dept Radiol, NL-7522 NH Nijmegen, Netherlands
[6] Canisius Wilhelmina Hosp, Dept Urol, NL-7522 NH Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr, Dept Urol, NL-6525 GA Nijmegen, Netherlands
[8] RadNets Div, Quantib BV, NL-3012 KM Rotterdam, Netherlands
关键词
artificial intelligence; extraprostatic extension (EPE); machine learning; magnetic resonance imaging (MRI); prostate cancer (PCa); radiomics; RADICAL PROSTATECTOMY; RISK;
D O I
10.3390/cancers15225452
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary The use of artificial intelligence algorithms can improve the prediction of lesion-specific histopathological extraprostatic extension (EPE) on MRI in prostate cancer patients. A lesion-specific prediction model can be helpful in counseling patients for radical prostatectomy and adequate preoperative information of the exact location of EPE may contribute to a total removal of the prostate cancer.Abstract Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review
    Luis F. Calimano-Ramirez
    Mayur K. Virarkar
    Mauricio Hernandez
    Savas Ozdemir
    Sindhu Kumar
    Dheeraj R. Gopireddy
    Chandana Lall
    K. C. Balaji
    Mutlu Mete
    Kazim Z. Gumus
    Abdominal Radiology, 2023, 48 : 2379 - 2400
  • [2] MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review
    Calimano-Ramirez, Luis F. F.
    Virarkar, Mayur K. K.
    Hernandez, Mauricio
    Ozdemir, Savas
    Kumar, Sindhu
    Gopireddy, Dheeraj R. R.
    Lall, Chandana
    Balaji, K. C.
    Mete, Mutlu
    Gumus, Kazim Z. Z.
    ABDOMINAL RADIOLOGY, 2023, 48 (07) : 2379 - 2400
  • [3] MRI-based radiomics for prediction of extraprostatic extension of prostate cancer: a systematic review and meta-analysis
    Wen, Jing
    Liu, Wei
    Zhang, Yilan
    Shen, Xiaocui
    RADIOLOGIA MEDICA, 2024, 129 (05): : 702 - 711
  • [4] MRI-based radiomics for prediction of extraprostatic extension of prostate cancer: a systematic review and meta-analysis
    Jing Wen
    Wei Liu
    Yilan Zhang
    Xiaocui Shen
    La radiologia medica, 2024, 129 : 702 - 711
  • [5] Development and External Validation of a Novel Nomogram to Predict Side-specific Extraprostatic Extension in Patients with Prostate Cancer Undergoing Radical Prostatectomy
    Soeterik, Timo F. W.
    van Melick, Harm H. E.
    Dijksman, Lea M.
    Kusters-Vandevelde, Heidi
    Stomps, Saskia
    Schoots, Ivo G.
    Biesma, Douwe H.
    Witjes, J. A.
    Van Basten, Jean-Paul A.
    EUROPEAN UROLOGY ONCOLOGY, 2022, 5 (03): : 328 - 337
  • [6] External Validation of a Prediction Model for Side-specific Extraprostatic Extension of Prostate Cancer at Robot-assisted Radical Prostatectomy
    Veerman, Hans
    Heymans, Martijn W.
    van der Poel, Henk G.
    EUROPEAN UROLOGY OPEN SCIENCE, 2022, 37 : 50 - 52
  • [7] External validation of the Martini nomogram for prediction of side-specific extraprostatic extension of prostate cancer in patients undergoing robot-assisted radical prostatectomy
    Soeterik, Timo F. W.
    van Melick, Harm H. E.
    Dijksman, Lea M.
    Kusters-Vandevelde, Heidi V. N.
    Biesma, Douwe H.
    Witjes, J. A.
    van Basten, Jean-Paul A.
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2020, 38 (05) : 372 - 378
  • [8] External Validation of Models for Prediction of Side-specific Extracapsular Extension in Prostate Cancer Patients Undergoing Radical Prostatectomy
    Diamand, Romain
    Roche, Jean -Baptiste
    Lievore, Elena
    Lacetera, Vito
    Chiacchio, Giuseppe
    Beatrici, Valerio
    Mastroianni, Riccardo
    Simone, Giuseppe
    Windisch, Olivier
    Benamran, Daniel
    Favre, Martina Martins
    Fourcade, Alexandre
    Nguyen, Truong An
    Fournier, Georges
    Fiard, Gaelle
    Ploussard, Guillaume
    Roumeguere, Thierry
    Peltier, Alexandre
    Albisinni, Simone
    EUROPEAN UROLOGY FOCUS, 2023, 9 (02): : 309 - 316
  • [9] Development and validation of MRI-based deep learning models for prediction of microsatellite instability in rectal cancer
    Zhang, Wei
    Yin, Hongkun
    Huang, Zixing
    Zhao, Jian
    Zheng, Haoyu
    He, Du
    Li, Mou
    Tan, Weixiong
    Tian, Song
    Song, Bin
    CANCER MEDICINE, 2021, 10 (12): : 4164 - 4173
  • [10] Is Extraprostatic Extension of Cancer Predictable? A Review of Predictive Tools and an External Validation Based on a Large and a Single Center Cohort of Prostate Cancer Patients
    Rocco, Bernardo
    Sighinolfi, Maria Chiara
    Sandri, Marco
    Eissa, Ahmed
    Elsherbiny, Ahmed
    Zoeir, Ahmed
    Tadzia, Harvey
    Palayapalayam, Hariharan
    Kameh, Darien
    Coelho, Rafael
    Puliatti, Stefano
    Zuccolotto, Paola
    Montironi, Rodolfo
    Wiklund, Peter
    Miceli, Salvatore
    Bianchi, Giampaolo
    Patel, Vipul
    UROLOGY, 2019, 129 : 8 - 20