The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer

被引:2
|
作者
van den Berg, Ingeborg [1 ,2 ,3 ]
Soeterik, Timo F. W. [1 ,2 ]
van der Hoeven, Erik J. R. J. [4 ]
Claassen, Bart [5 ]
Brink, Wyger M. [3 ]
Baas, Diederik J. H. [6 ]
Sedelaar, J. P. Michiel [7 ]
Heine, Lizette [8 ]
Tol, Jim [8 ]
van Zyp, Jochem R. N. van der Voort [2 ]
van den Berg, Cornelis A. T. [2 ]
van den Bergh, Roderick C. N. [1 ]
van Basten, Jean-Paul A. [6 ,7 ]
van Melick, Harm H. E. [1 ]
机构
[1] St Antonius Hosp, Dept Urol, NL-3435 CM Nieuwegein, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiat Oncol, Div Imaging & Oncol, NL-3584 CX Utrecht, Netherlands
[3] Univ Twente, Tech Med Ctr, Magnet Detect & Imaging Grp, NL-7522 NH Enschede, Netherlands
[4] St Antonius Hosp, Dept Radiol, NL-3435 CM Nieuwegein, Netherlands
[5] Canisius Wilhelmina Hosp, Dept Radiol, NL-7522 NH Nijmegen, Netherlands
[6] Canisius Wilhelmina Hosp, Dept Urol, NL-7522 NH Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr, Dept Urol, NL-6525 GA Nijmegen, Netherlands
[8] RadNets Div, Quantib BV, NL-3012 KM Rotterdam, Netherlands
关键词
artificial intelligence; extraprostatic extension (EPE); machine learning; magnetic resonance imaging (MRI); prostate cancer (PCa); radiomics; RADICAL PROSTATECTOMY; RISK;
D O I
10.3390/cancers15225452
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary The use of artificial intelligence algorithms can improve the prediction of lesion-specific histopathological extraprostatic extension (EPE) on MRI in prostate cancer patients. A lesion-specific prediction model can be helpful in counseling patients for radical prostatectomy and adequate preoperative information of the exact location of EPE may contribute to a total removal of the prostate cancer.Abstract Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.
引用
收藏
页数:10
相关论文
共 34 条
  • [21] Preoperative MRI-based estimation of risk for positive resection margin after radical prostatectomy in patients with prostate cancer: development and validation of a simple scoring system
    Mi Yeon Park
    Kye Jin Park
    Mi-hyun Kim
    Jeong Kon Kim
    European Radiology, 2021, 31 : 4898 - 4907
  • [22] Preoperative MRI-based estimation of risk for positive resection margin after radical prostatectomy in patients with prostate cancer: development and validation of a simple scoring system
    Park, Mi Yeon
    Park, Kye Jin
    Kim, Mi-hyun
    Kim, Jeong Kon
    EUROPEAN RADIOLOGY, 2021, 31 (07) : 4898 - 4907
  • [23] External Validation of a Multiparametric Magnetic Resonance Imaging-based Nomogram for the Prediction of Extracapsular Extension and Seminal Vesicle Invasion in Prostate Cancer Patients Undergoing Radical Prostatectomy
    Diamand, Romain
    Ploussard, Guillaume
    Roumiguie, Mathieu
    Oderda, Marco
    Benamran, Daniel
    Fiard, Gaelle
    Quackels, Thierry
    Assenmacher, Gregoire
    Simone, Giuseppe
    Van Damme, Julien
    Malavaud, Bernard
    Iselin, Christophe
    Descotes, Jean-Luc
    Roche, Jean-Baptiste
    Peltier, Alexandre
    Roumeguere, Thierry
    Albisinni, Simone
    EUROPEAN UROLOGY, 2021, 79 (02) : 180 - 185
  • [24] DEVELOPMENT, MULTI-INSTITUTIONAL EXTERNAL VALIDATION, AND ALGORITHMIC AUDIT OF SEPERA - AN ARTIFICIAL INTELLIGENCE-BASED SIDE-SPECIFIC EXTRA-PROSTATIC EXTENSION RISK ASSESSMENT TOOL FOR PATIENTS UNDERGOING RADICAL PROSTATECTOMY
    Kwong, Jethro
    Khondker, Adree
    Meng, Eric
    Taylor, Nicholas
    Kuk, Cynthia
    Perlis, Nathan
    Kulkarni, Girish
    Hamilton, Robert
    Fleshner, Neil
    Finelli, Antonio
    Van der Kwast, Theodorus
    Ali, Amna
    Jamal, Munir
    Papanikolaou, Frank
    Short, Thomas
    Srigley, John
    Colinet, Valentin
    Peltier, Alexandre
    Diamand, Romain
    Lefebvre, Yolene
    Mandoorah, Qusay
    Sanchez-Salas, Rafael
    Macek, Petr
    Cathelineau, Xavier
    Eklund, Martin
    Johnson, Alistair
    Feifer, Andrew
    Zlotta, Alexandre
    JOURNAL OF UROLOGY, 2023, 209 : E852 - E853
  • [25] ACCURACY OF THE MRI 5-POINT LIKERT SCORE TO PREDICT EXTRA-PROSTATIC EXTENSION AND SEMINAL VESICLE INVASION IN PATIENTS UNDERGOING RADICAL PROSTATECTOMY FOR PROSTATE CANCER AND DEVELOPMENT OF A NEW MRI-BASED NOMOGRAM
    Pellegrino, Francesco
    Falagario, Ugo G.
    Proietti, Flavia
    Brasetti, Aldo
    Hagman, Anna
    Briganti, Alberto
    Montorsi, Francesco
    Carrieri, Giuseppe
    Lantz, Anna
    Akre, Olof
    Aly, Markus
    Egevad, Lars
    Jaderling, Fredrik
    Wiklund, Peter
    JOURNAL OF UROLOGY, 2024, 211 (05): : E969 - E970
  • [26] Accuracy of the MRI 5-point Likert score to predict extra-prostatic extension and seminal vesicle invasion in patients undergoing radical prostatectomy for prostate cancer and development of a new MRI-based nomogram.
    Pellegrino, F.
    Falagario, U. G.
    Proietti, F.
    Brasetti, A.
    Hagman, A.
    Briganti, A.
    Montorsi, F.
    Carrieri, G.
    Lantz, A.
    Akre, O.
    Aly, M.
    Egevad, L.
    Jaderling, F.
    Wiklund, P.
    EUROPEAN UROLOGY, 2024, 85 : S459 - S460
  • [27] Development, multi-institutional external validation, and algorithmic audit of an artificial intelligence-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA) for patients undergoing radical prostatectomy: a retrospective cohort study
    Kwong J.C.C.
    Khondker A.
    Meng E.
    Taylor N.
    Kuk C.
    Perlis N.
    Kulkarni G.S.
    Hamilton R.J.
    Fleshner N.E.
    Finelli A.
    van der Kwast T.H.
    Ali A.
    Jamal M.
    Papanikolaou F.
    Short T.
    Srigley J.R.
    Colinet V.
    Peltier A.
    Diamand R.
    Lefebvre Y.
    Mandoorah Q.
    Sanchez-Salas R.
    Macek P.
    Cathelineau X.
    Eklund M.
    Johnson A.E.W.
    Feifer A.
    Zlotta A.R.
    The Lancet Digital Health, 2023, 5 (07): : e435 - e445
  • [28] EXTERNAL VALIDATION OF A MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING-BASED NOMOGRAM FOR THE PREDICTION OF EXTRACAPSULAR EXTENSION OF PROSTATE CANCER: OUTCOMES ON A SERIES OF PATIENTS DIAGNOSED WITH MPMRI TARGETED PLUS SYSTEMATIC SATURATION BIOPSY
    Eissa, Ahmed
    Sighinolfi, Maria Chiara
    Sandri, Marco
    Torricelli, Pietro
    Fiocchi, Federica
    Ligabue, Guido
    Bonetti, Luca Reggiani
    Puliatti, Stefano
    De Carne, Cosimo
    Micali, Salvatore
    Patel, Vipul
    Bianchi, Giampaolo
    Rocco, Bernardo Maria
    JOURNAL OF UROLOGY, 2019, 201 (04): : E112 - E113
  • [29] Re: Romain Diamand, Jean-Baptiste Roche, Elena Lievore, et al. External Validation of Models for Prediction of Side- specific Extracapsular Extension in Prostate Cancer Patients Undergoing Radical Prostatectomy. Eur Urol Focus. 2023;9:309-16
    Rocco, Bernardo
    Sighinolfi, Maria Chiara
    EUROPEAN UROLOGY, 2023, 9 (03) : 547 - 547
  • [30] External validation of a novel side-specific, multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension of prostate cancer: preliminary outcomes on a series diagnosed with multiparametric magnetic resonance imaging-targeted plus systematic saturation biopsy
    Sighinolfi, Maria Chiara
    Sandri, Marco
    Torricelli, Piero
    Ligabue, Guido
    Fiocchi, Federica
    Scialpi, Michele
    Eissa, Ahmed
    Bonetti, Luca Reggiani
    Puliatti, Stefano
    Bianchi, Giampaolo
    Rocco, Bernardo
    BJU INTERNATIONAL, 2019, 124 (02) : 192 - 194