The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer

被引:2
|
作者
van den Berg, Ingeborg [1 ,2 ,3 ]
Soeterik, Timo F. W. [1 ,2 ]
van der Hoeven, Erik J. R. J. [4 ]
Claassen, Bart [5 ]
Brink, Wyger M. [3 ]
Baas, Diederik J. H. [6 ]
Sedelaar, J. P. Michiel [7 ]
Heine, Lizette [8 ]
Tol, Jim [8 ]
van Zyp, Jochem R. N. van der Voort [2 ]
van den Berg, Cornelis A. T. [2 ]
van den Bergh, Roderick C. N. [1 ]
van Basten, Jean-Paul A. [6 ,7 ]
van Melick, Harm H. E. [1 ]
机构
[1] St Antonius Hosp, Dept Urol, NL-3435 CM Nieuwegein, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiat Oncol, Div Imaging & Oncol, NL-3584 CX Utrecht, Netherlands
[3] Univ Twente, Tech Med Ctr, Magnet Detect & Imaging Grp, NL-7522 NH Enschede, Netherlands
[4] St Antonius Hosp, Dept Radiol, NL-3435 CM Nieuwegein, Netherlands
[5] Canisius Wilhelmina Hosp, Dept Radiol, NL-7522 NH Nijmegen, Netherlands
[6] Canisius Wilhelmina Hosp, Dept Urol, NL-7522 NH Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr, Dept Urol, NL-6525 GA Nijmegen, Netherlands
[8] RadNets Div, Quantib BV, NL-3012 KM Rotterdam, Netherlands
关键词
artificial intelligence; extraprostatic extension (EPE); machine learning; magnetic resonance imaging (MRI); prostate cancer (PCa); radiomics; RADICAL PROSTATECTOMY; RISK;
D O I
10.3390/cancers15225452
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary The use of artificial intelligence algorithms can improve the prediction of lesion-specific histopathological extraprostatic extension (EPE) on MRI in prostate cancer patients. A lesion-specific prediction model can be helpful in counseling patients for radical prostatectomy and adequate preoperative information of the exact location of EPE may contribute to a total removal of the prostate cancer.Abstract Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.
引用
收藏
页数:10
相关论文
共 34 条
  • [31] CAN WE RELY ON AVAILABLE MODELS PREDICTING PATHOLOGICAL OUTCOMES IN PROSTATE CANCER PATIENTS STAGED WITH 68GA PSMA-PET/CT? EXTERNAL VALIDATION OF THE EXISTING NOMOGRAMS FOR EXTRACAPSULAR EXTENSION AND SEMINAL VESICLE INVASION AND DEVELOPMENT OF A NOVEL TOOL INCLUDING INTRAPROSTATIC SUVMAX
    Scuderi, Simone
    Gandaglia, Giorgio
    Rajwa, Pawel
    Rivas, Juan Gomez
    Bianchi, Lorenzo
    Kesch, Claudia
    Darr, Christopher
    Guo, Hongqian
    Zhuang, Junlong
    Zattoni, Fabio
    Fendler, Wolfgang
    Marra, Giancarlo
    Huebner, Nicolai
    Joniau, Steven
    Schiavina, Riccardo
    Mattei, Agostino
    Fiori, Cristian
    Porpiglia, Francesco
    Picchio, Maria
    van den Bergh, Roderick
    Shariat, Shahrok
    Chiti, Arturo
    Montorsi, Francesco
    Briganti, Alberto
    JOURNAL OF UROLOGY, 2024, 211 (05): : E372 - E372
  • [32] External validation of a digital pathology-based multimodal artificial intelligence-derived (MMAI) model in advanced prostate cancer patients starting long-term androgen deprivation therapy (ADT): an ancillary study of four phase III trials of the STAMPEDE platform protocol
    Parker, C. T. A.
    Mendes, L.
    Grist, E.
    Liu, V
    Griffin, J.
    Chen, E.
    Tran, P.
    Spratt, D.
    Sachdeva, A.
    Brown, L.
    Esteva, A.
    Feng, F.
    Clarke, N.
    James, N. D.
    Attard, G.
    JOURNAL OF PATHOLOGY, 2024, 264 : S7 - S7
  • [33] Can we rely on available models predicting pathological outcomes in prostate cancer patients staged with 68-Ga PSMA-PET/CT? External validation of the existing nomograms for extracapsular extension and seminal vesicle invasion at radical prostatectomy and development of a novel tool including intraprostatic SUVmax
    Scuderi, S. L. A.
    Rajwa, P.
    Gomez-Rivas, J.
    Bianchi, L.
    Kesch, C.
    Darr, C.
    Guo, H.
    Zhuang, J.
    Zattoni, F.
    Fendler, W.
    Marra, G.
    Huebner, N.
    Joniau, S.
    Schiavina, R.
    Mattei, A.
    Fiori, C.
    Porpiglia, F.
    Picchio, M.
    Chiti, A.
    Van Den Bergh, R.
    Shariat, S.
    Montorsi, F.
    Briganti, A.
    Gandaglia, G.
    EUROPEAN UROLOGY, 2024, 85 : S472 - S473
  • [34] Reply to Bernardo Rocco and Maria Chiara Sighinolfi's Letter to the Editor re: Romain Diamand, Jean-Baptiste Roche, Elena Lievore, et al. External Validation of Models for Prediction of Side-specific Extracapsular Extension in Prostate Cancer Patients Undergoing Radical Prostatectomy. Eur Urol Focus 2023;9:309-16 Reply
    Diamand, Romain
    Albisinni, Simone
    EUROPEAN UROLOGY FOCUS, 2023, 9 (03): : 548 - 548