Influence of Graphene Stability on III-Nitride Remote Epitaxy for Exfoliation

被引:2
|
作者
Han, Xu [1 ,2 ]
Yu, Jiadong [3 ]
Yang, Peilong [1 ]
Liu, Bo [1 ]
Wang, Xun [1 ]
Hao, Zhibiao [1 ,2 ]
Luo, Yi [1 ,2 ]
Sun, Changzheng [1 ,2 ]
Han, Yanjun [1 ,2 ]
Xiong, Bing [1 ,2 ]
Wang, Jian [1 ,2 ]
Li, Hongtao [1 ,2 ]
Wang, Lai [1 ,2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRist, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Flexible Elect Technol, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
III-nitride; exfoliation; MOCVD; graphene; remote epitaxy; DOPED GRAPHENE; GAN; LAYER;
D O I
10.1021/acsanm.3c02811
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Remoteepitaxy via graphene has acquired much attention becauseof its potential for epi-layer mechanical exfoliation. The stabilityof graphene during the epitaxy process is a key point in realizingepi-layer exfoliation. In this work, GaN and AlN buffer layers weregrown on a graphene-coated AlN/sapphire template and studied for thestability of graphene during the different stages of III-nitrides'remote epitaxy. The annealing experiments of graphene in differentatmospheres illustrate that N-2 carrier gas is the betterchoice to protect graphene. The graphene transition layer can remainstable during the low-temperature GaN or AlN buffer growth process,making the epi-layer exfoliable. However, when the temperature increasedto a common value for GaN growth in MOCVD, recrystallization of thebuffer layers happened and the graphene transition layer could bedestroyed. As a result, the epi-layers cannot be exfoliated in thiscase. These results illustrate that the recrystallization processshould be avoided or weakened to achieve exfoliation of the epi-layer.
引用
收藏
页码:15159 / 15165
页数:7
相关论文
共 50 条
  • [41] Recent Advances on p-Type III-Nitride Nanowires by Molecular Beam Epitaxy
    Zhao, Songrui
    Mi, Zetian
    CRYSTALS, 2017, 7 (09):
  • [42] III-nitride photonic cavities
    Butte, Raphael
    Grandjean, Nicolas
    NANOPHOTONICS, 2020, 9 (03) : 569 - 598
  • [43] III-Nitride avalanche photodiodes
    Kung, Patrick
    McClintock, Ryan
    Vizcaino, Jose Luis Pau
    Minder, Kathryn
    Bayram, Can
    Razeghi, Manijeh
    QUANTUM SENSING AND NANOPHOTONIC DEVICES IV, 2007, 6479
  • [44] III-nitride blue microdisplays
    Jiang, HX
    Jin, SX
    Li, J
    Shakya, J
    Lin, JY
    APPLIED PHYSICS LETTERS, 2001, 78 (09) : 1303 - 1305
  • [45] III-nitride UV devices
    Khan, MA
    Shatalov, M
    Maruska, HP
    Wang, HM
    Kuokstis, E
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (10): : 7191 - 7206
  • [46] III-Nitride Semiconductor Photoelectrodes
    Fujii, Katsushi
    SEMICONDUCTORS FOR PHOTOCATALYSIS, 2017, 97 : 139 - 183
  • [47] Doping of III-nitride materials
    Pampili, Pietro
    Parbrook, Peter J.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 62 : 180 - 191
  • [48] III-Nitride vertical devices
    Oka, Tohru
    III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : 219 - 242
  • [49] Anti-surfactant in III-nitride epitaxy - Quantum dot formation and dislocation termination
    Tanaka, S
    Takeuchi, M
    Aoyagi, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (8B): : L831 - L834
  • [50] The mechanism of H2 plasma in III-nitride low-temperature epitaxy
    Zhang, Zixuan
    Luo, Yi
    Yu, Wangyang
    Li, Xiang
    Wang, Jian
    Yu, Jiadong
    Wang, Lai
    Hao, Zhibiao
    Sun, Changzheng
    Han, Yanjun
    Xiong, Bing
    Li, Hongtao
    2019 24TH MICROOPTICS CONFERENCE (MOC), 2019, : 264 - 265