TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction

被引:6
|
作者
Zhu, Yi-Heng [1 ,2 ]
Zhang, Chengxin [2 ]
Liu, Yan [1 ]
Omenn, Gilbert S. [2 ,3 ,4 ,5 ]
Freddolino, Peter L. [2 ,6 ]
Yu, Dong-Jun [1 ]
Zhang, Yang [2 ,6 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Gene function annotation; Gene Ontology; Transcript expression profile; Triplet network; Protein-level alignment; SEQUENCE; ONTOLOGY;
D O I
10.1016/j.gpb.2022.03.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and noncoding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and nai<spacing diaeresis> ve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.
引用
收藏
页码:1013 / 1027
页数:15
相关论文
共 50 条
  • [41] Screening of characteristic genes in ulcerative colitis by integrating gene expression profiles
    Han, Yingbo
    Liu, Xiumin
    Dong, Hongmei
    Wen, Dacheng
    BMC GASTROENTEROLOGY, 2021, 21 (01)
  • [42] Integrating personalized gene expression profiles into predictive disease-associated gene pools
    Jörg Menche
    Emre Guney
    Amitabh Sharma
    Patrick J. Branigan
    Matthew J. Loza
    Frédéric Baribaud
    Radu Dobrin
    Albert-László Barabási
    npj Systems Biology and Applications, 3
  • [43] Integrating personalized gene expression profiles into predictive disease-associated gene pools
    Menche, Joerg
    Guney, Emre
    Sharma, Amitabh
    Branigan, Patrick J.
    Loza, Matthew J.
    Baribaud, Frederic
    Dobrin, Radu
    Barabasi, Albert-Laszlo
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2017, 3
  • [44] Integrating Computational Protein Function Prediction into Drug Discovery Initiatives
    Grant, Marianne A.
    DRUG DEVELOPMENT RESEARCH, 2011, 72 (01) : 4 - 16
  • [45] Ranking Cancer Proteins by Integrating PPI Network and Protein Expression Profiles
    Ren, Jie
    Shang, Lulu
    Wang, Qing
    Li, Jing
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [46] Reduced renin expression and altered gene transcript profiles in multicystic dysplastic kidneys - Discussion
    Snodgrass, W
    Doshi, R
    JOURNAL OF UROLOGY, 2002, 168 (04): : 1820 - 1820
  • [47] Differential gene and protein expression profiles in patients with CIS
    Zhang, Xin
    Tang, Yunan
    Rogan, Sarah
    Jin, Jianping
    Speer, Danielle
    Markovic-Plese, Silva
    MULTIPLE SCLEROSIS, 2008, 14 : S232 - S232
  • [48] Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction
    Lotfi, H.
    Hejazi, M. A.
    Heshmati, M. K.
    Mohammadi, S. A.
    Zarghami, N.
    CELLULAR AND MOLECULAR BIOLOGY, 2017, 63 (09) : 96 - 105
  • [49] CEGSO: Boosting Essential Proteins Prediction by Integrating Protein Complex, Gene Expression, Gene Ontology, Subcellular Localization and Orthology Information
    Wei Zhang
    Xiaoli Xue
    Chengwang Xie
    Yuanyuan Li
    Junhong Liu
    Hailin Chen
    Guanghui Li
    Interdisciplinary Sciences: Computational Life Sciences, 2021, 13 : 349 - 361
  • [50] CEGSO: Boosting Essential Proteins Prediction by Integrating Protein Complex, Gene Expression, Gene Ontology, Subcellular Localization and Orthology Information
    Zhang, Wei
    Xue, Xiaoli
    Xie, Chengwang
    Li, Yuanyuan
    Liu, Junhong
    Chen, Hailin
    Li, Guanghui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2021, 13 (03) : 349 - 361