TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction

被引:6
|
作者
Zhu, Yi-Heng [1 ,2 ]
Zhang, Chengxin [2 ]
Liu, Yan [1 ]
Omenn, Gilbert S. [2 ,3 ,4 ,5 ]
Freddolino, Peter L. [2 ,6 ]
Yu, Dong-Jun [1 ]
Zhang, Yang [2 ,6 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Gene function annotation; Gene Ontology; Transcript expression profile; Triplet network; Protein-level alignment; SEQUENCE; ONTOLOGY;
D O I
10.1016/j.gpb.2022.03.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and noncoding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and nai<spacing diaeresis> ve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.
引用
收藏
页码:1013 / 1027
页数:15
相关论文
共 50 条
  • [21] Reduced renin expression and altered gene transcript profiles in multicystic dysplastic kidneys
    Liapis, H
    Doshi, RH
    Watson, MA
    Liapis, A
    Steinhardt, GF
    JOURNAL OF UROLOGY, 2002, 168 (04): : 1816 - 1820
  • [22] Regional heterogeneity in gene expression profiles: a transcript analysis in human and rat heart
    Sharma, S
    Razeghi, P
    Shakir, A
    Keneson, BJ
    Clubbb, F
    Taegtmeyer, H
    CARDIOLOGY, 2003, 100 (02) : 73 - 79
  • [23] Gene expression trends and protein features effectively complement each other in gene function prediction
    Wabnik, Krzysztof
    Hvidsten, Torgeir R.
    Kedzierska, Anna
    Van Leene, Jelle
    De Jaeger, Geert
    Beemster, Gerrit T. S.
    Komorowski, Jan
    Kuiper, Martin T. R.
    BIOINFORMATICS, 2009, 25 (03) : 322 - 330
  • [24] Improving protein function prediction by learning and integrating representations of protein sequences and function labels
    Boadu, Frimpong
    Cheng, Jianlin
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [25] Integrating genetic mutations and expression profiles for survival prediction of lung adenocarcinoma
    Song, Yueqiang
    Chen, Donglai
    Zhang, Xi
    Luo, Yuping
    Li, Siguang
    THORACIC CANCER, 2019, 10 (05) : 1220 - 1228
  • [26] Protein function prediction from dynamic protein interaction network using gene expression data
    Saha, Sovan
    Prasad, Abhimanyu
    Chatterjee, Piyali
    Basu, Subhadip
    Nasipuri, Mita
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2019, 17 (04)
  • [27] Integrating protein-protein interactions and text mining for protein function prediction
    Samira Jaeger
    Sylvain Gaudan
    Ulf Leser
    Dietrich Rebholz-Schuhmann
    BMC Bioinformatics, 9
  • [28] Integrating protein-protein interactions and text mining for protein function prediction
    Jaeger, Samira
    Gaudan, Sylvain
    Leser, Ulf
    Rebholz-Schuhmann, Dietrich
    BMC BIOINFORMATICS, 2008, 9 (Suppl 8)
  • [29] Prediction of treatment response using gene expression profiles
    Korenberg, MJ
    JOURNAL OF PROTEOME RESEARCH, 2002, 1 (01) : 55 - 61
  • [30] Class prediction of lung nodule gene expression profiles
    Walter, KL
    Borczuk, AC
    Wang, LGQ
    Assaad, AA
    Austin, JHM
    Pearson, GD
    Shiau, MC
    Powell, CA
    CHEST, 2004, 125 (05) : 104S - 104S