TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction

被引:6
|
作者
Zhu, Yi-Heng [1 ,2 ]
Zhang, Chengxin [2 ]
Liu, Yan [1 ]
Omenn, Gilbert S. [2 ,3 ,4 ,5 ]
Freddolino, Peter L. [2 ,6 ]
Yu, Dong-Jun [1 ]
Zhang, Yang [2 ,6 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Gene function annotation; Gene Ontology; Transcript expression profile; Triplet network; Protein-level alignment; SEQUENCE; ONTOLOGY;
D O I
10.1016/j.gpb.2022.03.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and noncoding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and nai<spacing diaeresis> ve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.
引用
收藏
页码:1013 / 1027
页数:15
相关论文
共 50 条
  • [31] Improving microRNA target prediction with gene expression profiles
    Ovando-Vazquez, Cesare
    Lepe-Soltero, Daniel
    Abreu-Goodger, Cei
    BMC GENOMICS, 2016, 17
  • [32] Improving microRNA target prediction with gene expression profiles
    Cesaré Ovando-Vázquez
    Daniel Lepe-Soltero
    Cei Abreu-Goodger
    BMC Genomics, 17
  • [33] A paradigm for class prediction using gene expression profiles
    Radmacher, MD
    McShane, LM
    Simon, R
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (03) : 505 - 511
  • [34] Convolutional neural network approach to lung cancer classification integrating protein interaction network and gene expression profiles
    Matsubara, Teppei
    Ochiai, Tomoshiro
    Hayashida, Morihiro
    Akutsu, Tatsuya
    Nacher, Jose C.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2019, 17 (03)
  • [35] Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles
    Zhang, Weijia
    Thuc Duy Le
    Liu, Lin
    Zhou, Zhi-Hua
    Li, Jiuyong
    PLOS ONE, 2016, 11 (04):
  • [36] Probabilistic Critical Controllability Analysis of Protein Interaction Networks Integrating Normal Brain Ageing Gene Expression Profiles
    Yamaguchi, Eimi
    Akutsu, Tatsuya
    Nacher, Jose C.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (18)
  • [37] Convolutional Neural Network Approach to Lung Cancer Classification Integrating Protein Interaction Network and Gene Expression Profiles
    Matsubara, Teppei
    Nacher, Jose C.
    Ochiai, Tomoshiro
    Hayashida, Morihiro
    Akutsu, Tatsuya
    PROCEEDINGS 2018 IEEE 18TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2018, : 151 - 154
  • [38] Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis
    Lips, Esther H.
    van Eijk, Ronald
    de Graaf, Eelco J. R.
    Oosting, Jan
    de Miranda, Noel F. C. C.
    Karsten, Tom
    de Velde, Cornelis J. van
    Eilers, Paul H. C.
    Tollenaar, Rob A. E. M.
    van Wezel, Tom
    Morreau, Hans
    BMC CANCER, 2008, 8 (1)
  • [39] Integrating chromosomal aberrations and gene expression profiles to dissect rectal tumorigenesis
    Esther H Lips
    Ronald van Eijk
    Eelco JR de Graaf
    Jan Oosting
    Noel FCC de Miranda
    Tom Karsten
    Cornelis J van de Velde
    Paul HC Eilers
    Rob AEM Tollenaar
    Tom van Wezel
    Hans Morreau
    BMC Cancer, 8
  • [40] Screening of characteristic genes in ulcerative colitis by integrating gene expression profiles
    Yingbo Han
    Xiumin Liu
    Hongmei Dong
    Dacheng Wen
    BMC Gastroenterology, 21