TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction

被引:6
|
作者
Zhu, Yi-Heng [1 ,2 ]
Zhang, Chengxin [2 ]
Liu, Yan [1 ]
Omenn, Gilbert S. [2 ,3 ,4 ,5 ]
Freddolino, Peter L. [2 ,6 ]
Yu, Dong-Jun [1 ]
Zhang, Yang [2 ,6 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Gene function annotation; Gene Ontology; Transcript expression profile; Triplet network; Protein-level alignment; SEQUENCE; ONTOLOGY;
D O I
10.1016/j.gpb.2022.03.001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and noncoding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and nai<spacing diaeresis> ve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.
引用
收藏
页码:1013 / 1027
页数:15
相关论文
共 50 条
  • [1] PROSNET: INTEGRATING HOMOLOGY WITH MOLECULAR NETWORKS FOR PROTEIN FUNCTION PREDICTION
    Wang, Sheng
    Qui, Meng
    Peng, Jian
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 27 - 38
  • [2] Integrating Biological Knowledge with Gene Expression Profiles for Survival Prediction of Cancer
    Chen, Xi
    Wang, Lily
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (02) : 265 - 278
  • [3] Integrating gene expression and metabolic profiles
    Li, Z
    Chan, C
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) : 27124 - 27137
  • [4] Protein Expression Data Improves Gene Function Prediction
    Yang, Huadong
    Song, Xiaofeng
    Guo, Xuejiang
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1869 - 1870
  • [5] UDoGeC: Essential Protein Prediction Using Domain And Gene Expression Profiles
    Shabnam, Fathima C. B.
    Izudheen, Sminu
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATIONS, 2016, 93 : 1003 - 1009
  • [6] Transcript variants and expression profiles analysis of Mitf gene in minipigs
    Weiwei Guo
    Lili Ren
    Lei Chen
    Yu Ning
    Lidong Zhao
    Shiming Yang
    Journal of Otology, 2015, 10 (02) : 83 - 86
  • [7] Geometric Interpretation of Gene Expression by Sparse Reconstruction of Transcript Profiles
    Prat, Yosef
    Fromer, Menachem
    Linial, Michal
    Linial, Nathan
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 355 - +
  • [8] SURVIVAL PREDICTION WITH GENE EXPRESSION PROFILES
    He, Wenqing
    Yi, Grace Y.
    JP JOURNAL OF BIOSTATISTICS, 2009, 3 (01) : 17 - 39
  • [9] Integrating Gene Expression Data Into Genomic Prediction
    Li, Zhengcao
    Gao, Ning
    Martini, Johannes W. R.
    Simianer, Henner
    FRONTIERS IN GENETICS, 2019, 10
  • [10] Integrating multiple networks for protein function prediction
    Yu, Guoxian
    Zhu, Hailong
    Domeniconi, Carlotta
    Guo, Maozu
    BMC SYSTEMS BIOLOGY, 2015, 9