Fast, Approximate Maximum Likelihood Estimation of Log-Gaussian Cox Processes

被引:3
|
作者
Dovers, Elliot [1 ,2 ]
Brooks, Wesley
Popovic, Gordana C. C.
Warton, David I. I.
机构
[1] Univ New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
[2] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Automatic differentiation; Fixed rank kriging; Integrated nested Laplace approximation; Point patterns; Spatial point process; Variational approximation; PRESENCE-ONLY DATA; BAYESIAN-INFERENCE; PROCESS MODELS; LAPLACE APPROXIMATION; R PACKAGE; SPACE; BIAS;
D O I
10.1080/10618600.2023.2182311
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Log-Gaussian Cox processes (LGCPs) offer a framework for regression-style modeling of point patterns that can accommodate spatial latent effects. These latent effects can be used to account for missing predictors or other sources of clustering that could not be explained by a Poisson process. Fitting LGCP models can be challenging because the marginal likelihood does not have a closed form and it involves a high dimensional integral to account for the latent Gaussian field. We propose a novel methodology for fitting LGCP models that addresses these challenges using a combination of variational approximation and reduced rank interpolation. Additionally, we implement automatic differentiation to obtain exact gradient information, for computationally efficient optimization and to consider integral approximation using the Laplace method. We demonstrate the method's performance through both simulations and a real data application, with promising results in terms of computational speed and accuracy compared to that of existing approaches. for this article is available online.
引用
收藏
页码:1660 / 1670
页数:11
相关论文
共 50 条
  • [21] Going off grid: computationally efficient inference for log-Gaussian Cox processes
    Simpson, D.
    Illian, J. B.
    Lindgren, F.
    Sorbye, S. H.
    Rue, H.
    BIOMETRIKA, 2016, 103 (01) : 49 - 70
  • [22] ON THE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR DIFFUSION PROCESSES
    Chang, Jinyuan
    Chen, Song Xi
    ANNALS OF STATISTICS, 2011, 39 (06): : 2820 - 2851
  • [23] Best unbiased prediction for Gaussian and log-Gaussian processes
    Cox, DD
    First Erich L. Lehmann Symposium - Optimality, 2004, 44 : 125 - 132
  • [24] Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm
    Diggle, Peter J.
    Moraga, Paula
    Rowlingson, Barry
    Taylor, Benjamin M.
    STATISTICAL SCIENCE, 2013, 28 (04) : 542 - 563
  • [25] Spatiotemporal prediction for log-Gaussian Cox processes (vol 63, pg 823, 2001)
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 946 - 946
  • [26] Careful prior specification avoids incautious inference for log-Gaussian Cox point processes
    Sorbye, Sigrunn H.
    Illian, Janine B.
    Simpson, Daniel P.
    Burslem, David
    Rue, Havard
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (03) : 543 - 564
  • [27] Spatiotemporal prediction for log-Gaussian Cox processes (vol 63, pg 823, 2001)
    Taylor, Benjamin M.
    Diggle, Peter J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 601 - 602
  • [28] Intercalibration of survey methods using paired fishing operations and log-Gaussian Cox processes
    Thygesen, Uffe Hogsbro
    Kristensen, Kasper
    Jansen, Teunis
    Beyer, Jan E.
    ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (04) : 1189 - 1199
  • [29] INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes
    Taylor, Benjamin M.
    Diggle, Peter J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (10) : 2266 - 2284
  • [30] lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R
    Taylor, Benjamin M.
    Davies, Tilman M.
    Rowlingson, Barry
    Diggle, Peter J.
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 52 (04):