Fast, Approximate Maximum Likelihood Estimation of Log-Gaussian Cox Processes

被引:3
|
作者
Dovers, Elliot [1 ,2 ]
Brooks, Wesley
Popovic, Gordana C. C.
Warton, David I. I.
机构
[1] Univ New South Wales, Sch Math & Stat & Evolut, Sydney, Australia
[2] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Automatic differentiation; Fixed rank kriging; Integrated nested Laplace approximation; Point patterns; Spatial point process; Variational approximation; PRESENCE-ONLY DATA; BAYESIAN-INFERENCE; PROCESS MODELS; LAPLACE APPROXIMATION; R PACKAGE; SPACE; BIAS;
D O I
10.1080/10618600.2023.2182311
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Log-Gaussian Cox processes (LGCPs) offer a framework for regression-style modeling of point patterns that can accommodate spatial latent effects. These latent effects can be used to account for missing predictors or other sources of clustering that could not be explained by a Poisson process. Fitting LGCP models can be challenging because the marginal likelihood does not have a closed form and it involves a high dimensional integral to account for the latent Gaussian field. We propose a novel methodology for fitting LGCP models that addresses these challenges using a combination of variational approximation and reduced rank interpolation. Additionally, we implement automatic differentiation to obtain exact gradient information, for computationally efficient optimization and to consider integral approximation using the Laplace method. We demonstrate the method's performance through both simulations and a real data application, with promising results in terms of computational speed and accuracy compared to that of existing approaches. for this article is available online.
引用
收藏
页码:1660 / 1670
页数:11
相关论文
共 50 条
  • [1] Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes
    Macdonald, Bethany J.
    Davies, Tilman M.
    Hazelton, Martin L.
    SPATIAL STATISTICS, 2023, 56
  • [2] Spatiotemporal prediction for log-Gaussian Cox processes
    Brix, A
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 823 - 841
  • [3] Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-Gaussian Cox processes
    Davies, Tilman M.
    Hazelton, Martin L.
    STATISTICA NEERLANDICA, 2013, 67 (04) : 355 - 389
  • [4] Local spatial log-Gaussian Cox processes for seismic data
    Nicoletta D’Angelo
    Marianna Siino
    Antonino D’Alessandro
    Giada Adelfio
    AStA Advances in Statistical Analysis, 2022, 106 : 633 - 671
  • [5] LOG-GAUSSIAN COX PROCESSES IN INFINITE-DIMENSIONAL SPACES
    Torres, A.
    Frias, M. P.
    Ruiz-Medina, M. D.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 95 : 157 - 177
  • [6] On new families of anisotropic spatial log-Gaussian Cox processes
    Nasirzadeh, Fariba
    Shishebor, Zohreh
    Mateu, Jorge
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (02) : 183 - 213
  • [7] On new families of anisotropic spatial log-Gaussian Cox processes
    Fariba Nasirzadeh
    Zohreh Shishebor
    Jorge Mateu
    Stochastic Environmental Research and Risk Assessment, 2021, 35 : 183 - 213
  • [8] Local spatial log-Gaussian Cox processes for seismic data
    D'Angelo, Nicoletta
    Siino, Marianna
    D'Alessandro, Antonino
    Adelfio, Giada
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (04) : 633 - 671
  • [9] Bayesian Variable Selection Methods for Log-Gaussian Cox Processes
    Pinto Junior, Jony Arrais
    da Silva, Patricia Viana
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, MAXENT 37, 2018, 239 : 101 - 110
  • [10] Visual textures as realizations of multivariate log-Gaussian Cox processes
    Huu-Giao Nguyen
    Fablet, Ronan
    Boucher, Jean-Marc
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,