Traveling wavefronts in an anomalous diffusion predator-prey model

被引:0
|
作者
Abobakr, Asmaa H. [1 ]
Hussien, Hussien S. [1 ]
Mansour, Mahmoud B. A. [1 ]
Elshehabey, Hillal M. [1 ]
机构
[1] South Valley Univ, Fac Sci, Math Dept, Qena 83523, Egypt
关键词
predator-prey model; anomalous diffusion; traveling wavefronts; DYNAMICS; EQUATIONS;
D O I
10.1515/zna-2023-0306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we study traveling wavefronts in an anomalous diffusion predator-prey model with the modified Leslie-Gower and Holling-type II schemes. We perform a traveling wave analysis to show that the model has heteroclinic trajectories connecting two steady state solutions of the resulting system of fractional partial differential equations and corresponding to traveling wavefronts. This also includes numerical results to show the existence of traveling wavefronts. Furthermore, we obtain the numerical time-dependent solutions in order to show the evolution of wavefronts. We find that wavefronts exist that travel faster in the anomalous subdiffusive regime than in the normal diffusive one. Our results emphasize that the main properties of traveling waves and invasions are altered by anomalous subdiffusion in this model.
引用
收藏
页码:459 / 465
页数:7
相关论文
共 50 条
  • [31] Pattern formation in a predator-prey diffusion model with stage structure for the predator
    Sun, Liangliang
    Fu, Shengmao
    Ma, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 2988 - 3000
  • [32] THE EFFECT OF DIFFUSION ON THE DYNAMICS OF A PREDATOR-PREY CHEMOSTAT MODEL
    Nie, H. U. A.
    Shi, Y. A. O.
    Wu, J. I. A. N. H. U. A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (03) : 821 - 848
  • [33] Bifurcations in a predator-prey model in patchy environment with diffusion
    Aly, S
    Farkas, M
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (03) : 519 - 526
  • [34] An analysis of a predator-prey model with both diffusion and migration
    Liu, Pan-Ping
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (9-10) : 1064 - 1070
  • [35] Spatial patterns of a predator-prey model with cross diffusion
    Sun, Gui-Quan
    Jin, Zhen
    Li, Li
    Haque, Mainul
    Li, Bai-Lian
    NONLINEAR DYNAMICS, 2012, 69 (04) : 1631 - 1638
  • [36] A New Stage Structure Predator-Prey Model with Diffusion
    Alkhasawneh R.A.
    International Journal of Applied and Computational Mathematics, 2021, 7 (3)
  • [37] Pattern Dynamics in a Predator-Prey Model with Diffusion Network
    Yang, Wenjie
    Zheng, Qianqian
    Shen, Jianwei
    Hu, Qing
    COMPLEXITY, 2022, 2022
  • [38] Coexistence in the three species predator-prey model with diffusion
    Kim, KI
    Lin, ZG
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) : 701 - 716
  • [39] Consequences of refuge and diffusion in a spatiotemporal predator-prey model
    Han, Renji
    Guin, Lakshmi Narayan
    Dai, Binxiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [40] The Dynamics of a Predator-Prey Model with Diffusion and Indirect Prey-Taxis
    Wang, Jianping
    Wang, Mingxin
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) : 1291 - 1310