Pattern formation in a predator-prey diffusion model with stage structure for the predator

被引:6
|
作者
Sun, Liangliang [1 ]
Fu, Shengmao [2 ]
Ma, Wenjun [3 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730030, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[3] Lanzhou Commercial Coll, Longqiao Coll, Lanzhou 730101, Peoples R China
关键词
Predator-prey model; Stage structure; Diffusion; Quantitative characterization; Pattern formation; Nonlinear instability; INSTABILITY; GROWTH; DELAY;
D O I
10.1016/j.camwa.2015.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a Neumann boundary value problem in a d-dimensional box T-d = (0, pi)(d) (d = 1, 2, 3) for the predator-prey diffusion model {U-1t = d(1) Delta U-1 + U-1 (a - U-1 - epsilon U-2 - U-3), U-2t = Delta (d(2)U(2) + d(4)U(2)/sigma + U-3(2)) + kU(1)U(3) - U-2, U-3t = d(3)Delta U-3 + bU(2) - mU(3) with predator-stage structure. By using the bootstrap technique (Guo and Hwang, 2010) and higher-order energy estimates, we provide a rigorous quantitative characterization for the nonlinear evolution of early spatiotemporal pattern formation on the unstable positive constant equilibrium. As a consequence, the nonlinear instability occurs. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2988 / 3000
页数:13
相关论文
共 50 条
  • [1] A New Stage Structure Predator-Prey Model with Diffusion
    Alkhasawneh R.A.
    [J]. International Journal of Applied and Computational Mathematics, 2021, 7 (3)
  • [2] Pattern formation of a predator-prey model
    Liu, Pan-Ping
    Jin, Zhen
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2009, 3 (03) : 177 - 183
  • [3] Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion
    Lian, Xinze
    Yan, Shuling
    Wang, Hailing
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Global convergence of a reaction-diffusion predator-prey model with stage structure for the predator
    Xu, Rui
    Chaplain, M. A. J.
    Davidson, F. A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 388 - 401
  • [5] Global dynamics of a predator-prey model with stage structure for the predator
    Georgescu, Paul
    Hsieh, Ying-Hen
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) : 1379 - 1395
  • [6] A predator-prey model with taxis mechanisms and stage structure for the predator
    Wang, Jianping
    Wang, Mingxin
    [J]. NONLINEARITY, 2020, 33 (07) : 3134 - 3172
  • [7] Periodic solutions of a predator-prey model with stage structure for predator
    Xu, R
    Chaplain, MAJ
    Davidson, FA
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) : 847 - 870
  • [8] Bifurcations and Pattern Formation in a Predator-Prey Model
    Cai, Yongli
    Gui, Zhanji
    Zhang, Xuebing
    Shi, Hongbo
    Wang, Weiming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (11):
  • [9] Global dynamics of a delayed predator-prey model with stage structure for the predator and the prey
    Wang, Lingshu
    Feng, Guanghui
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3937 - 3949
  • [10] Global Behavior for A Predator-Prey Diffusion Model with Stage-Structure
    Zhang, Rui
    Liu, Jing
    Zhang, Yingying
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 427 - 430