Traveling wavefronts in an anomalous diffusion predator-prey model

被引:0
|
作者
Abobakr, Asmaa H. [1 ]
Hussien, Hussien S. [1 ]
Mansour, Mahmoud B. A. [1 ]
Elshehabey, Hillal M. [1 ]
机构
[1] South Valley Univ, Fac Sci, Math Dept, Qena 83523, Egypt
关键词
predator-prey model; anomalous diffusion; traveling wavefronts; DYNAMICS; EQUATIONS;
D O I
10.1515/zna-2023-0306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we study traveling wavefronts in an anomalous diffusion predator-prey model with the modified Leslie-Gower and Holling-type II schemes. We perform a traveling wave analysis to show that the model has heteroclinic trajectories connecting two steady state solutions of the resulting system of fractional partial differential equations and corresponding to traveling wavefronts. This also includes numerical results to show the existence of traveling wavefronts. Furthermore, we obtain the numerical time-dependent solutions in order to show the evolution of wavefronts. We find that wavefronts exist that travel faster in the anomalous subdiffusive regime than in the normal diffusive one. Our results emphasize that the main properties of traveling waves and invasions are altered by anomalous subdiffusion in this model.
引用
收藏
页码:459 / 465
页数:7
相关论文
共 50 条
  • [21] Existence of traveling wave solutions in a diffusive predator-prey model
    Huang, JH
    Lu, G
    Ruan, SG
    JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (02) : 132 - 152
  • [22] Traveling wave solutions for a diffusive predator-prey model with predator saturation and competition
    Zhu, Lin
    Wu, Shi-Liang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (06)
  • [23] Existence of traveling wave solutions in a diffusive predator-prey model
    Jianhua Huang
    Gang Lu
    Shigui Ruan
    Journal of Mathematical Biology, 2003, 46 : 132 - 152
  • [24] Large speed traveling waves for the Rosenzweig-MacArthur predator-prey model with spatial diffusion
    Ducrot, Arnaud
    Liu, Zhihua
    Magal, Pierre
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 415
  • [25] DIFFUSION AND PREDATOR-PREY INTERACTION
    CONWAY, ED
    SMOLLER, JA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 33 (04) : 673 - 686
  • [26] A ratio-dependent predator-prey model with diffusion
    Zeng, Xianzhong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (04) : 1062 - 1078
  • [27] Existence of positive solutions to a predator-prey model with diffusion
    Zhang Y.
    Chen W.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2010, 40 (03): : 660 - 662
  • [28] Dynamics analysis of a predator-prey model with degenerate diffusion
    Chen, Mengxin
    Tian, Canrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [29] Diffusion as a strategy for survival in an invasion predator-prey model
    Olmos-Liceaga, Daniel
    Villavicencio-Pulido, Geiser
    Adrian Acuna-Zegarra, Manuel
    NATURAL RESOURCE MODELING, 2017, 30 (03)
  • [30] Bifurcation in a predator-prey model with diffusion: Rotating waves
    Kovács S.
    Differential Equations and Dynamical Systems, 2009, 17 (1-2) : 135 - 146