Existence of traveling wave solutions in a diffusive predator-prey model

被引:126
|
作者
Huang, JH [1 ]
Lu, G
Ruan, SG
机构
[1] Cent China Normal Univ, Dept Math, Wuhan 430079, Hubei, Peoples R China
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
关键词
traveling wave solution; Wazewski set; shooting argument; Hopf bifurcation;
D O I
10.1007/s00285-002-0171-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish the existence of traveling front solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-II functional response. The traveling front solutions are equivalent to heteroclinic orbits in R-4 and the small amplitude traveling wave train solutions are equivalent to small amplitude periodic orbits in R-4. The methods used to prove the results are the shooting argument and the Hopf bifurcation theorem.
引用
收藏
页码:132 / 152
页数:21
相关论文
共 50 条