Deep Learning-Assisted Droplet Digital PCR for Quantitative Detection of Human Coronavirus

被引:8
|
作者
Lee, Young Suh [1 ]
Choi, Ji Wook [1 ]
Kang, Taewook [2 ,3 ]
Chung, Bong Geun [1 ,3 ]
机构
[1] Sogang Univ, Dept Mech Engn, Seoul 04107, South Korea
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul 04107, South Korea
[3] Sogang Univ, Inst Integrated Biotechnol, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
ddPCR; Image processing; Deep learning; Mask R-CNN; GMM clustering;
D O I
10.1007/s13206-023-00095-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Since coronavirus disease 2019 (COVID-19) pandemic rapidly spread worldwide, there is an urgent demand for accurate and suitable nucleic acid detection technology. Although the conventional threshold-based algorithms have been used for processing images of droplet digital polymerase chain reaction (ddPCR), there are still challenges from noise and irregular size of droplets. Here, we present a combined method of the mask region convolutional neural network (Mask R-CNN)-based image detection algorithm and Gaussian mixture model (GMM)-based thresholding algorithm. This novel approach significantly reduces false detection rate and achieves highly accurate prediction model in a ddPCR image processing. We demonstrated that how deep learning improved the overall performance in a ddPCR image processing. Therefore, our study could be a promising method in nucleic acid detection technology.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 50 条
  • [21] Droplet digital PCR method for the absolute quantitative detection and monitoring of Lacticaseibacillus casei
    Kim, Eiseul
    Yang, Seung-Min
    Choi, Changs Hun
    Shin, Min-Ki
    Kim, Hae-Yeong
    FOOD MICROBIOLOGY, 2023, 113
  • [22] Utility of droplet digital PCR for the quantitative detection of polyomavirus JC in clinical samples
    Giovannelli, Irene
    Ciccone, Nunziata
    Vaggelli, Guendalina
    Della Malva, Nunzia
    Torricelli, Francesca
    Rossolini, Gian Maria
    Giannecchini, Simone
    JOURNAL OF CLINICAL VIROLOGY, 2016, 82 : 70 - 75
  • [23] Quantitative detection of circulating tumor DNA by droplet-based digital PCR
    Taly, Valerie
    Pekin, Deniz
    Kotsopoulos, Steve
    Gang, Hu
    Le Corre, Delphine
    Benhaim, Leonor
    Hutchison, Brian J.
    Link, Darren R.
    Blons, Helene
    Laurent-Puig, Pierre
    CANCER RESEARCH, 2012, 72
  • [24] Deep learning-assisted light sheet holography
    Asoudegi, Nima
    Dorrah, Ahmed h.
    Mojahedi, Mo
    OPTICS EXPRESS, 2024, 32 (02) : 1161 - 1175
  • [25] Deep Learning-Assisted Video Compression Framework
    Man, Hengyu
    Yu, Chang
    Xing, Feng
    Cheng, Yang
    Zheng, Bo
    Fan, Xiaopeng
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3210 - 3214
  • [26] Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies
    Astuto, Bruno
    Flament, Io
    Namiri, Nikan K.
    Shah, Rutwik
    Bharadwaj, Upasana
    Link, Thomas M.
    Bucknor, Matthew D.
    Pedoia, Valentina
    Majumdar, Sharmila
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (03)
  • [27] Detection of mosaics in hemophilia A by deep Ion Torrent sequencing and droplet digital PCR
    Manderstedt, Eric
    Nilsson, Rosanna
    Ljung, Rolf
    Lind-Hallden, Christina
    Astermark, Jan
    Hallden, Christer
    RESEARCH AND PRACTICE IN THROMBOSIS AND HAEMOSTASIS, 2020, 4 (07) : 1121 - 1130
  • [28] Deep Learning-Assisted Visualized Fluorometric Sensor Array for Biogenic Amines Detection
    Tan, Xiaoqing
    Ye, Yingying
    Liu, Hong
    Meng, Jianxin
    Yang, Lin-Lin
    Li, Fengyu
    CHINESE JOURNAL OF CHEMISTRY, 2022, 40 (05) : 609 - 616
  • [29] Deep learning-assisted Hubble parameter analysis
    Salti, Mehmet
    Kangal, Evrim Ersin
    Zengin, Bilgin
    MODERN PHYSICS LETTERS A, 2024, 39 (04)
  • [30] Deep Learning-Assisted Quantitative Susceptibility Mapping as a Tool for Grading and Molecular Subtyping of Gliomas
    Rui, Wenting
    Zhang, Shengjie
    Shi, Huidong
    Sheng, Yaru
    Zhu, Fengping
    Yao, Yidi
    Chen, Xiang
    Cheng, Haixia
    Zhang, Yong
    Aili, Ababikere
    Yao, Zhenwei
    Zhang, Xiao-Yong
    Ren, Yan
    PHENOMICS, 2023, 3 (03): : 243 - 254