Deep Learning-Assisted Droplet Digital PCR for Quantitative Detection of Human Coronavirus

被引:8
|
作者
Lee, Young Suh [1 ]
Choi, Ji Wook [1 ]
Kang, Taewook [2 ,3 ]
Chung, Bong Geun [1 ,3 ]
机构
[1] Sogang Univ, Dept Mech Engn, Seoul 04107, South Korea
[2] Sogang Univ, Dept Chem & Biomol Engn, Seoul 04107, South Korea
[3] Sogang Univ, Inst Integrated Biotechnol, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
ddPCR; Image processing; Deep learning; Mask R-CNN; GMM clustering;
D O I
10.1007/s13206-023-00095-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Since coronavirus disease 2019 (COVID-19) pandemic rapidly spread worldwide, there is an urgent demand for accurate and suitable nucleic acid detection technology. Although the conventional threshold-based algorithms have been used for processing images of droplet digital polymerase chain reaction (ddPCR), there are still challenges from noise and irregular size of droplets. Here, we present a combined method of the mask region convolutional neural network (Mask R-CNN)-based image detection algorithm and Gaussian mixture model (GMM)-based thresholding algorithm. This novel approach significantly reduces false detection rate and achieves highly accurate prediction model in a ddPCR image processing. We demonstrated that how deep learning improved the overall performance in a ddPCR image processing. Therefore, our study could be a promising method in nucleic acid detection technology.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 50 条
  • [41] Establishment of Droplet Digital PCR Assay for Quantitative Detection of Vibrio vulnificus in Aquatic Products
    Ma D.
    Wei Y.
    Li D.
    Wei H.
    Xu L.
    Wang Q.
    Fu P.
    Zhang X.
    Zeng J.
    Shipin Kexue/Food Science, 2020, 41 (12): : 305 - 311
  • [42] Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs
    Chen, Dan-Feng
    Zhang, Lu-Jun
    Tan, Kezhe
    Jing, Qing
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (01) : 116 - 123
  • [43] Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions
    Zhang, Qiang
    Li, Xin
    Yu, Long
    Wang, Lingxiao
    Wen, Zhiqing
    Su, Pengchen
    Sun, Zhenli
    Wang, Suhua
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2025, 149 : 68 - 78
  • [44] Detection of Spiroplasma citri by droplet digital PCR
    Maheshwari, Y.
    Selvaraj, V.
    Hajeri, S.
    Yokomi, R. K.
    PHYTOPATHOLOGY, 2017, 107 (12) : 58 - 58
  • [45] Detection of fish allergen by droplet digital PCR
    Daga, Cinzia
    Cau, Simona
    Tilocca, Maria Giovanna
    Soro, Barbara
    Marongiu, Aldo
    Vodret, Bruna
    ITALIAN JOURNAL OF FOOD SAFETY, 2018, 7 (04): : 222 - 225
  • [46] Precise measurement of nanoscopic septin ring structures with deep learning-assisted quantitative superresolution microscopy
    Zehtabian, Amin
    Mueller, Paul Markus
    Goisser, Maximilian
    Obendorf, Leon
    Jaenisch, Lea
    Huempfer, Nadja
    Rentsch, Jakob
    Ewers, Helge
    MOLECULAR BIOLOGY OF THE CELL, 2022, 33 (08)
  • [47] Deep Learning-Assisted Superhydrophobic LIG/MWCNT Wearable Sensor for Underwater Motion Detection
    Yu, He
    Zhou, Guan-Ya
    Liu, Yu-Bing
    Li, Hao-Bin
    Song, Lin
    Xiao, Chang-Yun Kun
    Peng, Mu-Gen
    IEEE SENSORS JOURNAL, 2024, 24 (18) : 29392 - 29399
  • [48] Automated Detection of Corneal Edema With Deep Learning-Assisted Second Harmonic Generation Microscopy
    Anton, Stefan R.
    Martinez-Ojeda, Rosa M.
    Hristu, Radu
    Stanciu, George A.
    Toma, Antonela
    Banica, Cosmin K.
    Fernandez, Enrique J.
    Huttunen, Mikko J.
    Bueno, Juan M.
    Stanciu, Stefan G.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (06)
  • [49] Deep Learning-Assisted Unmanned Aerial Vehicle Flight Data Anomaly Detection: A Review
    Yang, Lei
    Li, Shaobo
    Zhang, Yizong
    Zhu, Caichao
    Liao, Zihao
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 31681 - 31695
  • [50] Deep Learning-Assisted TeraHertz QPSK Detection Relying on Single-Bit Quantization
    He, Dongxuan
    Wang, Zhaocheng
    Quek, Tony Q. S.
    Chen, Sheng
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8175 - 8187