Semiparametric Density Ratio Model for Survival Data with a Cure Fraction
被引:0
|
作者:
Zhong, Weibin
论文数: 0引用数: 0
h-index: 0
机构:
Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Zhong, Weibin
[1
]
Diao, Guoqing
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Diao, Guoqing
[2
]
机构:
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
Cure rate model;
Density ratio model;
Nonparametric maximum likelihood estimation;
Semiparametric inference;
PROPORTIONAL HAZARDS MODEL;
REGRESSION-MODEL;
MIXTURE MODEL;
RATES;
D O I:
10.1007/s12561-022-09357-3
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
机构:
Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, CanadaSimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Feng, Jiahui
Wong, Kin Yau
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Guangdong, Peoples R ChinaSimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
Wong, Kin Yau
Lee, Chun Yin
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R ChinaSimon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
机构:
Cornell Univ, Div Biostat & Epidemiol, Dept Publ Hlth, Weill Med Coll, New York, NY 10065 USACornell Univ, Div Biostat & Epidemiol, Dept Publ Hlth, Weill Med Coll, New York, NY 10065 USA
Rua, Sandra M. Hurtado
Dey, Dipak K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Stat, Storrs, CT 06269 USACornell Univ, Div Biostat & Epidemiol, Dept Publ Hlth, Weill Med Coll, New York, NY 10065 USA