Semiparametric Density Ratio Model for Survival Data with a Cure Fraction

被引:0
|
作者
Zhong, Weibin [1 ]
Diao, Guoqing [2 ]
机构
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
关键词
Cure rate model; Density ratio model; Nonparametric maximum likelihood estimation; Semiparametric inference; PROPORTIONAL HAZARDS MODEL; REGRESSION-MODEL; MIXTURE MODEL; RATES;
D O I
10.1007/s12561-022-09357-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 50 条
  • [41] Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data
    Yayuan Zhu
    Jingjing Wu
    Xuewen Lu
    Computational Statistics, 2013, 28 : 2495 - 2518
  • [42] Cure Rate Quantile Regression for Censored Data With a Survival Fraction
    Wu, Yuanshan
    Yin, Guosheng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1517 - 1531
  • [43] Semiparametric density estimation under a two-sample density ratio model
    Cheng, KF
    Chu, CK
    BERNOULLI, 2004, 10 (04) : 583 - 604
  • [44] Semiparametric Accelerated Failure Time Mixture Cure Model for Clustered Data
    Zhang, Dongfang
    Chen, Min
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 922 - 922
  • [45] A multiple imputation approach for semiparametric cure model with interval censored data
    Zhou, Jie
    Zhang, Jiajia
    McLain, Alexander C.
    Cai, Bo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 99 : 105 - 114
  • [46] Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error
    Chen, Li-Pang
    STATISTICS & PROBABILITY LETTERS, 2019, 154
  • [47] A Semiparametric Two-Sample Density Ratio Model With a Change Point
    Feng, Jiahui
    Wong, Kin Yau
    Lee, Chun Yin
    BIOMETRICAL JOURNAL, 2024, 66 (08)
  • [48] A transformation class for spatio-temporal survival data with a cure fraction
    Rua, Sandra M. Hurtado
    Dey, Dipak K.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 167 - 187
  • [49] The Extrapolation Performance of Survival Models for Data With a Cure Fraction: A Simulation Study
    Kearns, Benjamin
    Stevenson, Matt D.
    Triantafyllopoulos, Kostas
    Manca, Andrea
    VALUE IN HEALTH, 2021, 24 (11) : 1634 - 1642
  • [50] Defective 3-parameter Gompertz model with frailty term for estimating cure fraction in survival data
    Hajizadeh, Nastaran
    Baghestani, Ahmad Reza
    Pourhoseingholi, Mohamad Amin
    Maboudi, Ali Akbar Khadem
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023, 33 (01) : 90 - 113