A transformation class for spatio-temporal survival data with a cure fraction

被引:8
|
作者
Rua, Sandra M. Hurtado [1 ]
Dey, Dipak K. [2 ]
机构
[1] Cornell Univ, Div Biostat & Epidemiol, Dept Publ Hlth, Weill Med Coll, New York, NY 10065 USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
关键词
Bayesian hierarchical models; cure rate models; frailty models; Markov chain Monte Carlo; proportional odds; proportional hazards; spatial association; spatio-temporal models; survival modeling; time to event; MODELS;
D O I
10.1177/0962280212445658
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We propose a hierarchical Bayesian methodology to model spatially or spatio-temporal clustered survival data with possibility of cure. A flexible continuous transformation class of survival curves indexed by a single parameter is used. This transformation model is a larger class of models containing two special cases of the well-known existing models: the proportional hazard and the proportional odds models. The survival curve is modeled as a function of a baseline cumulative distribution function, cure rates, and spatio-temporal frailties. The cure rates are modeled through a covariate link specification and the spatial frailties are specified using a conditionally autoregressive model with time-varying parameters resulting in a spatio-temporal formulation. The likelihood function is formulated assuming that the single parameter controlling the transformation is unknown and full conditional distributions are derived. A model with a non-parametric baseline cumulative distribution function is implemented and a Markov chain Monte Carlo algorithm is specified to obtain the usual posterior estimates, smoothed by regional level maps of spatio-temporal frailties and cure rates. Finally, we apply our methodology to melanoma cancer survival times for patients diagnosed in the state of New Jersey between 2000 and 2007, and with follow-up time until 2007.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [1] Semiparametric transformation models for survival data with a cure fraction
    Zeng, Donglin
    Yin, Guosheng
    Ibrahim, Joseph G.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 670 - 684
  • [2] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [3] Implementing class library and index for managing spatio-temporal data
    Amagasa, T
    Aritsugi, M
    Tanaka, T
    Kanamori, Y
    [J]. ADVANCES IN DATABASE TECHNOLOGIES, 1999, 1552 : 532 - 541
  • [4] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    [J]. Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [5] Statistics for Spatio-Temporal Data
    Mills, Jeff
    [J]. JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513
  • [6] On Robustness for Spatio-Temporal Data
    Garcia-Perez, Alfonso
    [J]. MATHEMATICS, 2022, 10 (10)
  • [7] Statistics for Spatio-Temporal Data
    Haining, Robert P.
    [J]. GEOGRAPHICAL ANALYSIS, 2012, 44 (04) : 411 - 412
  • [8] Spatio-Temporal Data Construction
    Le, Hai Ha
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (03): : 837 - 853
  • [9] Mining spatio-temporal data
    Andrienko, Gennady
    Malerba, Donato
    May, Michael
    Teisseire, Maguelonne
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2006, 27 (03) : 187 - 190
  • [10] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116