Semiparametric Density Ratio Model for Survival Data with a Cure Fraction
被引:0
|
作者:
Zhong, Weibin
论文数: 0引用数: 0
h-index: 0
机构:
Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Zhong, Weibin
[1
]
Diao, Guoqing
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Diao, Guoqing
[2
]
机构:
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
Cure rate model;
Density ratio model;
Nonparametric maximum likelihood estimation;
Semiparametric inference;
PROPORTIONAL HAZARDS MODEL;
REGRESSION-MODEL;
MIXTURE MODEL;
RATES;
D O I:
10.1007/s12561-022-09357-3
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
机构:
Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen, Peoples R ChinaXiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Zhu, Weixuan
Zuo, Tiantian
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen, Peoples R ChinaXiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Zuo, Tiantian
Wang, Chunlin
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
Xiamen Univ, Sch Econ, Dept Stat & Data Sci, Xiamen, Peoples R China
Fujian China, 422 Siming South Rd, Xiamen 361005, Peoples R ChinaXiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
机构:
Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Renmin Univ China, Sch Stat, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Lin, Cunjie
Wei, Wenhua
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
Wei, Wenhua
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaRenmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
机构:
Baylor Coll Med, Dan L Duncan Canc Ctr, Div Biostat, Houston, TX 77030 USABaylor Coll Med, Dan L Duncan Canc Ctr, Div Biostat, Houston, TX 77030 USA
Liu, Hao
Shen, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USABaylor Coll Med, Dan L Duncan Canc Ctr, Div Biostat, Houston, TX 77030 USA