Probabilistic local wellposedness of 1D quintic NLS below L2(R)

被引:0
|
作者
Hwang, Gyeongha [1 ]
Yoon, Haewon [2 ]
机构
[1] Yeungnam Univ, Dept Math, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Chung Ang Univ, Dept Math, 84 Heukseok Ro, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Probabilistic wellposedness; Nonlinear Schrodinger equation; Bilinear Strichartz estimate; NONLINEAR SCHRODINGER-EQUATION; WELL-POSEDNESS;
D O I
10.1016/j.jmaa.2023.127195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the nonlinear Schrodinger equation i partial differential tu + partial differential x2u +/- u5 = 0 on the real line, which is L2-critical. We prove the local well-posedness of the initial value problem (IVP) for the scaling supercritical regularity regime - 10 < s < 0 in probabilistic manner. One of the main ingredient is to establish the 1 probabilistic bilinear Strichartz estimate.(c) 2023 Published by Elsevier Inc.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Global wellposedness for KDV below L2
    Colliander, J
    Staffilani, G
    Takaoka, H
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (5-6) : 755 - 778
  • [2] On global existence of L2 solutions for 1D periodic NLS with quadratic nonlinearity
    Fujiwara, Kazumasa
    Georgiev, Vladimir
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
  • [3] Global wellposedness for 1D non-linear Schrodinger equation for data with an infinite L2 norm
    Vargas, A
    Vega, L
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (10): : 1029 - 1044
  • [5] Non-Existence of Solutions for the Periodic Cubic NLS below L2
    Guo, Zihua
    Oh, Tadahiro
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (06) : 1656 - 1729
  • [6] Local stationarity of L2 (R) processes
    Garcia, FM
    Lourtie, IMG
    Buescu, J
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1221 - 1224
  • [7] Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (01) : 31 - 54
  • [8] On the global well-posedness of the quadratic NLS on H1(T) + L2(R)
    Chaichenets, L.
    Hundertmark, D.
    Kunstmann, P.
    Pattakos, N.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (02):
  • [9] On local invertible operators in L2(R1, H)
    Hasanov, M
    MATHEMATISCHE NACHRICHTEN, 2001, 228 : 145 - 154
  • [10] L2 estimates for the Solutions of Burgers-Sivashinsky Equation in 1D and 2D
    Demirkaya, Aslihan
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '09), 2009, 1184 : 107 - 114