Global wellposedness for 1D non-linear Schrodinger equation for data with an infinite L2 norm

被引:59
|
作者
Vargas, A [1 ]
Vega, L
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
来源
关键词
nonlinear Schrodinger; oscillatory integrals;
D O I
10.1016/S0021-7824(01)01224-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global wellposedness for the one-dimensional cubic non-linear Schrodinger equation in a space of distributions which is invariant under Galilean transformations and includes L-2. This space arises naturally in the study of the restriction properties of the Fourier transform to curved surfaces. The L-P bounds, p not equal 2, for the extension operator, dual to the restricition one, plays a fundamental role in our approach. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1029 / 1044
页数:16
相关论文
共 50 条
  • [1] On the global well-posedness for the nonlinear Schrodinger equations with large initial data of infinite L2 norm
    Hyakuna, Ryosuke
    Tanaka, Takamasa
    Tsutsumi, Masayoshi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1304 - 1319
  • [2] Probabilistic local wellposedness of 1D quintic NLS below L2(R)
    Hwang, Gyeongha
    Yoon, Haewon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
  • [3] The infinite-dimensional algebras and integrability of a non-linear Schrodinger equation in (2+1) dimensions
    Zhao, XQ
    Lu, JF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1999, 112 (12): : 1501 - 1507
  • [4] From an Initial Data to a Global Solution of the Non-linear Schrodinger Equation: A Building Process
    Chemin, Jean-Yves
    David, Claire
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (08) : 2376 - 2396
  • [5] 2 COMPONENT DERIVATIVE NON-LINEAR SCHRODINGER EQUATION
    MORRIS, HC
    DODD, RK
    PHYSICA SCRIPTA, 1979, 20 (3-4): : 505 - 508
  • [6] GLOBAL EXISTENCE FOR SCHRODINGER-DEBYE SYSTEM FOR INITIAL DATA WITH INFINITE L2-NORM
    Corcho, Adan J.
    Ferreira, Lucas C. F.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (02) : 253 - 264
  • [7] GLOBAL CONTROLLABILITY OF THE 1D SCHRODINGER-POISSON EQUATION
    De Leo, Mariano
    Fernandez de la Vega, Constanza Sanchez
    Rial, Diego
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2013, 54 (01): : 43 - 54
  • [8] Numerical null controllability of the 1D linear Schrodinger equation
    Fernandez-Cara, Enrique
    Santos, Mauricio C.
    SYSTEMS & CONTROL LETTERS, 2014, 73 : 33 - 41
  • [9] Global well-posedness for discrete non-linear Schrodinger equation
    N'Guerekata, Gaston M.
    Pankov, Alexander
    APPLICABLE ANALYSIS, 2010, 89 (09) : 1513 - 1521
  • [10] Global well-posedness for the derivative non-linear Schrodinger equation
    Jenkins, Robert
    Liu, Jiaqi
    Perry, Peter A.
    Sulem, Catherine
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (08) : 1151 - 1195