Probabilistic well-posedness of the mass-critical NLS with radial data below L2(Rd)

被引:3
|
作者
Hwang, Gyeongha [1 ]
机构
[1] Yeungnam Univ, Dept Math, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
关键词
Nonlinear Schrodinger equation; Almost sure well-posedness; Strichartz estimates; Radial data; Mass-critical nonlinearity; NONLINEAR SCHRODINGER-EQUATION; DATA CAUCHY-THEORY; INVARIANT-MEASURES; WAVE-EQUATIONS; SCATTERING; DIMENSIONS;
D O I
10.1016/j.jmaa.2019.03.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of the mass-critical nonlinear Schrodinger equation (NLS) with radial data below L2(Rd). We prove almost sure local well-posedness along with small data global existence and scattering. Furthermore, we also derive conditional almost sure global well-posedness of the defocusing NLS under the assumption of a probabilistic a priori energy bound. The main ingredient is to establish the probabilistic radial Strichartz estimates. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1842 / 1854
页数:13
相关论文
共 50 条