Probabilistic local wellposedness of 1D quintic NLS below L2(R)

被引:0
|
作者
Hwang, Gyeongha [1 ]
Yoon, Haewon [2 ]
机构
[1] Yeungnam Univ, Dept Math, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Chung Ang Univ, Dept Math, 84 Heukseok Ro, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Probabilistic wellposedness; Nonlinear Schrodinger equation; Bilinear Strichartz estimate; NONLINEAR SCHRODINGER-EQUATION; WELL-POSEDNESS;
D O I
10.1016/j.jmaa.2023.127195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the nonlinear Schrodinger equation i partial differential tu + partial differential x2u +/- u5 = 0 on the real line, which is L2-critical. We prove the local well-posedness of the initial value problem (IVP) for the scaling supercritical regularity regime - 10 < s < 0 in probabilistic manner. One of the main ingredient is to establish the 1 probabilistic bilinear Strichartz estimate.(c) 2023 Published by Elsevier Inc.
引用
收藏
页数:21
相关论文
共 50 条