Digital Twin-Driven Thermal Error Prediction for CNC Machine Tool Spindle

被引:6
|
作者
Lu, Quanbo [1 ]
Zhu, Dong [2 ]
Wang, Meng [1 ,3 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Sevnce Robot Co Ltd, Chongqing 401123, Peoples R China
[3] Tangshan Polytech Coll, Sch Mech Engn, Tangshan 063299, Peoples R China
关键词
digital twin; thermal error; CNCMT; spindle; LSTM; COMPENSATION;
D O I
10.3390/lubricants11050219
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Traditional methods for predicting thermal error ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of thermal errors and affecting the normal processing of the CNC machine tool (CNCMT) spindle. To solve the above problem, we propose a thermal error prediction approach based on digital twins and long short-term memory (DT-LSTM). DT-LSTM combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the thermal characteristics analysis of a spindle. When the DT system is implemented, we can obtain the theoretical value of thermal error. Then, the experimental data is used to train LSTM. The output of LSTM is the actual value of thermal error. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that DT-LSTM has a higher accuracy than the single method by nearly 11%, which improves the prediction performance and robustness of thermal error.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Digital twin-driven surface roughness prediction and process parameter adaptive optimization
    Liu, Lilan
    Zhang, Xiangyu
    Wan, Xiang
    Zhou, Shuaichang
    Gao, Zenggui
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [42] Digital twin-driven smart supply chain
    Lu WANG
    Tianhu DENG
    Zuo-Jun Max SHEN
    Hao HU
    Yongzhi QI
    Frontiers of Engineering Management, 2022, (01) : 56 - 70
  • [43] Digital twin-driven smart supply chain
    Wang, Lu
    Deng, Tianhu
    Shen, Zuo-Jun Max
    Hu, Hao
    Qi, Yongzhi
    FRONTIERS OF ENGINEERING MANAGEMENT, 2022, 9 (01) : 56 - 70
  • [44] Digital twin-driven machine learning: ball bearings fault severity classification
    Farhat, Mohamed Habib
    Chiementin, Xavier
    Chaari, Fakher
    Bolaers, Fabrice
    Haddar, Mohamed
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (04)
  • [45] Digital twin-driven manufacturing equipment development
    Wei, Yongli
    Hu, Tianliang
    Dong, Lili
    Ma, Songhua
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 83
  • [46] Digital twin-driven product design framework
    Tao, Fei
    Sui, Fangyuan
    Liu, Ang
    Qi, Qinglin
    Zhang, Meng
    Song, Boyang
    Guo, Zirong
    Lu, Stephen C. -Y.
    Nee, A. Y. C.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2019, 57 (12) : 3935 - 3953
  • [47] Digital twin-driven smart supply chain
    WANG Lu
    DENG Tianhu
    SHEN Zuo-Jun Max
    HU Hao
    QI Yongzhi
    Frontiers of Engineering Management, 2022, 9 (01) : 56 - 70
  • [48] Digital Twin-Driven Remaining Useful Life Prediction for Rolling Element Bearing
    Lu, Quanbo
    Li, Mei
    MACHINES, 2023, 11 (07)
  • [49] Detection of spindle thermal state accuracy of vertical CNC machine tool
    Wang, Jianchen
    Deng, Xiaolei
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2019, 11 (02) : 43 - 49
  • [50] On the requirements of digital twin-driven autonomous maintenance
    Khan, Samir
    Farnsworth, Michael
    McWilliam, Richard
    Erkoyuncu, John
    ANNUAL REVIEWS IN CONTROL, 2020, 50 : 13 - 28