Digital Twin-Driven Thermal Error Prediction for CNC Machine Tool Spindle

被引:6
|
作者
Lu, Quanbo [1 ]
Zhu, Dong [2 ]
Wang, Meng [1 ,3 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Sevnce Robot Co Ltd, Chongqing 401123, Peoples R China
[3] Tangshan Polytech Coll, Sch Mech Engn, Tangshan 063299, Peoples R China
关键词
digital twin; thermal error; CNCMT; spindle; LSTM; COMPENSATION;
D O I
10.3390/lubricants11050219
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Traditional methods for predicting thermal error ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of thermal errors and affecting the normal processing of the CNC machine tool (CNCMT) spindle. To solve the above problem, we propose a thermal error prediction approach based on digital twins and long short-term memory (DT-LSTM). DT-LSTM combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the thermal characteristics analysis of a spindle. When the DT system is implemented, we can obtain the theoretical value of thermal error. Then, the experimental data is used to train LSTM. The output of LSTM is the actual value of thermal error. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that DT-LSTM has a higher accuracy than the single method by nearly 11%, which improves the prediction performance and robustness of thermal error.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Digital Twin modeling method for CNC machine tool
    Luo, Weichao
    Hu, Tianliang
    Zhu, Wendan
    Tao, Fei
    2018 IEEE 15TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2018,
  • [22] Digital Twin-Driven Framework for TBM Performance Prediction, Visualization, and Monitoring through Machine Learning
    Latif, Kamran
    Sharafat, Abubakar
    Seo, Jongwon
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [23] Thermal error detection and compensation technology for spindle of horizontal CNC machine tool with large torque
    Zhao, Changyong
    Xia, Yuanmeng
    Chen, Xuezhen
    Jiang, Yunfeng
    He, Yi
    Pan, Shilu
    Fei, Ya
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 107 (1-2): : 85 - 96
  • [24] Thermal error detection and compensation technology for spindle of horizontal CNC machine tool with large torque
    Changyong Zhao
    Yuanmeng Xia
    Xuezhen Chen
    Yunfeng Jiang
    Yi He
    Shilu Pan
    Ya Fei
    The International Journal of Advanced Manufacturing Technology, 2020, 107 : 85 - 96
  • [25] Thermal error detection and compensation technology for spindle of horizontal CNC machine tool with large torque
    Zhao, Changyong
    Xia, Yuanmeng
    Chen, Xuezhen
    Jiang, Yunfeng
    He, Yi
    Pan, Shilu
    Fei, Ya
    International Journal of Advanced Manufacturing Technology, 2020, 107 (1-2): : 85 - 96
  • [26] Thermal Error Modeling of Spindle for Precision CNC Machine Tool Based on AO-CNN
    Li G.
    Chen X.
    Li Z.
    Xu K.
    Tang X.
    Wang Z.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (08): : 51 - 61
  • [27] Adaptive thermal error prediction for CNC machine tool spindle using online measurement and an improved recursive least square algorithm
    Wei, Xinyuan
    Ye, Honghan
    Wang, Gao
    Hu, Weidong
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 56
  • [28] Analysis on thermal dynamic characteristics of CNC machine tool spindle
    Jiang, Shan
    Zhao, Zhigang
    Sun, Minglu
    Guo, Jianhui
    Yu, Hong
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2013, 46 (09): : 846 - 850
  • [29] Research on Thermal Characteristic of Spindle System of CNC Machine Tool
    Sheng, Zhongqi
    Zhu, Zongxiao
    Liu, Changchun
    Zhang, Chaobiao
    MACHINERY, MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, 2012, 510 : 23 - +
  • [30] Digital twin for CNC machine tool: modeling and using strategy
    Weichao Luo
    Tianliang Hu
    Chengrui Zhang
    Yongli Wei
    Journal of Ambient Intelligence and Humanized Computing, 2019, 10 : 1129 - 1140