Digital Twin-Driven Thermal Error Prediction for CNC Machine Tool Spindle

被引:6
|
作者
Lu, Quanbo [1 ]
Zhu, Dong [2 ]
Wang, Meng [1 ,3 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Sevnce Robot Co Ltd, Chongqing 401123, Peoples R China
[3] Tangshan Polytech Coll, Sch Mech Engn, Tangshan 063299, Peoples R China
关键词
digital twin; thermal error; CNCMT; spindle; LSTM; COMPENSATION;
D O I
10.3390/lubricants11050219
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Traditional methods for predicting thermal error ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of thermal errors and affecting the normal processing of the CNC machine tool (CNCMT) spindle. To solve the above problem, we propose a thermal error prediction approach based on digital twins and long short-term memory (DT-LSTM). DT-LSTM combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the thermal characteristics analysis of a spindle. When the DT system is implemented, we can obtain the theoretical value of thermal error. Then, the experimental data is used to train LSTM. The output of LSTM is the actual value of thermal error. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that DT-LSTM has a higher accuracy than the single method by nearly 11%, which improves the prediction performance and robustness of thermal error.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Research on Thermal Error Modeling of CNC Machine Tool
    Guo, Qianjian
    Yang, Jianguo
    SURFACE FINISHING TECHNOLOGY AND SURFACE ENGINEERING II, 2010, 135 : 170 - +
  • [32] DT-CEPA: A digital twin-driven contour error prediction approach for machine tools based on hybrid modeling and sparse time series
    Ji, Shuai
    Ni, Hepeng
    Hu, Tianliang
    Sun, Jian
    Yu, Hanwen
    Jin, Huazhen
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 88
  • [33] Predictive digital twin-driven dynamic error control for slow-tool-servo ultraprecision diamond turning
    Luo, Xichun
    Liu, Qi
    Madathil, Abhilash Puthanveettil
    Xie, Wenkun
    Rowe, W. Brian
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2024, 73 (01) : 377 - 380
  • [34] Digital twin for CNC machine tool: modeling and using strategy
    Luo, Weichao
    Hu, Tianliang
    Zhang, Chengrui
    Wei, Yongli
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (03) : 1129 - 1140
  • [35] Thermal error measurement of spindle for 5-axis CNC machine tool based on ball bar
    He, Zhen-Ya
    Fu, Jian-Zhong
    Chen, Zi-Chen
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1401 - 1408
  • [36] Digital Twin-Driven Tool Wear Monitoring and Predicting Method for the Turning Process
    Zhuang, Kejia
    Shi, Zhenchuan
    Sun, Yaobing
    Gao, Zhongmei
    Wang, Lei
    SYMMETRY-BASEL, 2021, 13 (08):
  • [37] Study on in-situ digital engineering of CNC machine tool spindle
    Chaphalkar, NS
    Zhang, XQ
    Yamazaki, K
    Mori, M
    TRANSACTIONS OF THE NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTE OF SME, VOL XXX, 2002, 2002, : 215 - 222
  • [38] Online Monitoring Method for NC Milling Tool Wear by Digital Twin-driven
    Li C.
    Sun X.
    Hou X.
    Zhao X.
    Wu S.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2022, 33 (01): : 78 - 87
  • [39] Correction to: Thermal error prediction of machine tool spindle using segment fusion LSSVM
    Feng Tan
    Guofu Yin
    Kai Zheng
    Xin Wang
    The International Journal of Advanced Manufacturing Technology, 2021, 116 : 115 - 115
  • [40] Digital Twin-Driven Rear Axle Assembly Torque Prediction and Online Control
    Liu, Lilan
    Xu, Zifeng
    Gao, Chaojia
    Zhang, Tingting
    Gao, Zenggui
    SENSORS, 2022, 22 (19)